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Introduction

Expanders are highly connected sparse graphs of fundamental interest in mathematics
and computer science.

While it is relatively simple to prove the existence of expanders using probabilistic ar-
guments in the style of Erdős, their explicit construction is difficult. The first explicit con-
struction was given by Margulis in [Mar75], and employed Kazhdan’s Property (T) from the
representation theory of semisimple groups. The aim of this essay is to present an essentially
complete exposition of the theory leading to the Margulis construction, while concurrently
developing the most important and illustrative general theory of both expander graphs and
Property (T). We also present an application of expanders to derandomization.

Chapter 1 introduces expander graphs under several common definitions which we show
to be equivalent, and gives some first properties of expanders. We also show the existence
of expanders, and consider some algebraic obstructions to groups giving expanders via their
Cayley graphs.

Chapter 2 then gives an equivalent algebraic definition of expansion, in terms a graph’s
adjacency matrix, and shows that expanders for this definition are expanders for the com-
binatorial definitions of the preceding chapter. We consider random walks on an expander
graph, and study the relationship between the graph spectrum and the behaviour of such
random walks. The algebraic definition allows us to give a straightforward application of ex-
panders to complexity theory, namely the derandomization of algorithms, where one improves
the accuracy of a randomized computational procedure with very little need for additional
randomness.

Property (T) is then introduced in Chapter 3. We develop some first consequences of
the definition, demonstrated by many examples of groups which do not have Property (T)
(with the help of amenability). After proving that all compact groups have Property (T) we
consider Kazhdan sets, which can be used to give an alternative definition of Property (T)
and are essential for the construction of expanders. We then study lattices in groups with
Property (T); finite generation of these lattices was the original motivation for the formu-
lation of Property (T). Finally, we give the proofs that certain non-compact groups have
Property (T), which will be used in Chapter 4 to give constructions of expanders.

This work is mostly based on the books by Lubotzky [Lub94] and de la Harpe and
Valette [dlHV89], with the chapter on random walks and derandomization based on the
survey paper [HLW06] of Hoory, Linial and Wigderson. The more recent and much larger
work of Bekka, de la Harpe and Valette on Property (T) in English, [BdlHV08], is also
referred to occasionally.

We present the material so as to be accessible for students of pure mathematics at honours
level. Efforts have been made in the selection of content so as to give a broad yet gentle
introduction to the topics of Chapters 1, 2 and 3, while still leading fairly directly to a
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proof of the construction of expanders in Chapter 4. The proof that these constructions are
expanders is complete except for classical results regarding lattices, and relative property (T)
of the pair (R2oSL(2,R),R2) for which we only give a proof outline. There are several other
parts of this essay where we call upon powerful results which we cannot prove here, but these
are not required for the construction of expanders and are used only to develop more general
theory.

The books [dlHV89] and especially [Lub94] are written at an advanced level, and leave
much unsaid. As well as filling in the details and correcting some erroneous arguments, our
treatment includes many examples, remarks and original figures that give context to the
non-specialist, motivate results and proofs, and address potential barriers to understanding.
We also avoid developing some technical machinery — such as weak containment of repre-
sentations, induced representations, the Fell topology, and functions of positive type — as
although these would be very useful topics for a detailed study of Property (T), that is not
our main purpose.

In particular, in [Lub94] the proof of existence of expanders, Theorem 1.45 in the present
essay, contains several ‘easy to see’ claims which are actually erroneous in certain cases and so
the statement has been corrected here. The proof that compact groups have Property (T) in
Section 3.3 differs from the literature in order to require fewer external results and to illustrate
Property (T) more concretely. The theory of random walks, including an application of
expanders to derandomization, which forms Chapter 2, leads naturally to the spectral theory
of graphs and gives an interesting background to Margulis’s construction in Chapter 4.
We also present the results of original computations investigating growth in the groups
SL(2,Z/pZ) in Section 1.8.
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Chapter 1

Expander Graphs

This chapter introduces some common definitions of expanders and establishes their
equivalence, as well as proving that expanders have various properties. We also establish the
existence of expander graphs, and demonstrate some algebraic properties that are necessary
conditions for groups to have Cayley graphs that are expanders.

We begin with Section 1.1 covering the necessary background knowledge from graph
theory. Section 1.2 then gives our main definition of expanders (Definition 1.14), which makes
precise the slogan that expanders are highly connected sparse graphs. This is followed by
some examples and first results. Section 1.3 examines the relationship between expansion and
diameter, concluding with a proof that expanders have logarithmic diameter (Corollary 1.31).
We then introduce in Section 1.4 some alternative definitions of expansion and show their
equivalence (Corollary 1.37). We develop a model of random regular graphs in Section 1.5 in
order to say in Theorem 1.45 that, under this model, almost all regular graphs are expanders.
This establishes the existence of expanders. Section 1.6 introduces Cayley graphs as a
useful means to construct regular graphs via group theory, with several examples. We prove
in Section 1.7 some negative results for expansion of certain families of Cayley graphs in
Theorems 1.51 and 1.53. This algebraic result demonstrates the difficulty of constructing
expanders. Finally in Section 1.8 we present the results of original computations that explore
expansion in the Cayley graphs of SL(2,Z/pZ) and in particular their diameters, which are
the subject of an open problem due to Lubotzky, Problem 1.58.

1.1. Graph Theory Background

A graph is a simple abstract representation of a collection of objects and their relation-
ships. There are several different flavours of graphs; we begin with the following definition,
and introduction variations afterwards as required.

Definition 1.1 (Graph). A graph X = (V,E) is a pair of sets V and E such that E ⊆ V ×V .
The elements of V are called vertices, and the elements of E are called edges. A graph with
the edges being ordered pairs of vertices is directed. If we instead consider the edges to be
unordered pairs of elements of V , then it is undirected. Edges of the form (v, v) are called
loops. If a graph is undirected and has no loops, we call it simple. If there is an edge (v, w),
we say that the vertices v and w are adjacent and that the edge (v, w) is incident to the
vertices v and w.

We often sketch graphs like polygons, or perhaps with curved rather than straight edges,
but it is important to remember that the geometry of a particular sketch is not important
(at least not in general, and not for our purposes here).

Examples 1.2. The following undirected graphs are shown in Figure 1.1.
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Figure 1.1. The graphs C8, K8 and Q3, which all have 8 vertices.

a) The cycle graph on n ≥ 3 vertices, denoted Cn, is a graph with vertices V = Z/nZ =
{0, 1, 2, . . . , n− 1} and edges joining each i to i+ 1.

b) The complete graph on n vertices, denoted Kn, has an edge joining every pair of

distinct vertices. It has
(
n
2

)
= n(n−1)

2
edges, which is maximal for an undirected

graph.
c) The nth hypercube graph, denoted Qn, on 2n vertices, has vertex set {0, 1}n, and

edges joining those n-tuples that differ in exactly one coordinate. It can be identified
with the 1-skeleton (that is, the vertices and edges) of the n-dimensional cube, so
in particular the graph Q3 can be identified with the 1-skeleton of the familiar cube
(which has 8 vertices and 12 edges in both the geometric and graph-theoretic senses).

It will be necessary sometimes to loosen our definition of a graph to the more general
notion of a multigraph, where two vertices can be connected by multiple edges. We will
indicate when this generalisation is required, but most of the examples we encounter will
be graphs rather than multigraphs. A multiset is a generalized set where the elements
are allowed to appear more than once (that is, they can have arbitrary positive integer
multiplicity).

Definition 1.3 (Multigraph). A multigraph X = (V,E) is a pair consisting of a set V and
a multiset E such that the elements of E are all members of V × V .

If a graph is simple, it is implicit that it is not a multigraph.
Expanders are “sparse graphs”, in a sense that is made precise by the definition of degree.

See Remark 1.6 below.

Definition 1.4 (Degree, Regular). The degree of a vertex is the number of edges of X
incident to it. If all vertices in a graph X have degree k, we say X is a k-regular graph. A
graph is regular if it is k-regular for some non-negative integer k.

Examples 1.5. All cycle graphs are 2-regular, the complete graph Kn is (n−1)-regular and
the hypercube graph Qn is n-regular.

Remark 1.6. There is no precise, universally agreed-upon definition of “sparseness” for
graphs. It means roughly speaking that the total number of edges is much less than the
number of unordered pairs on n vertices, that is

(
n
2

)
, which for a simple graph on n vertices

is the maximum number of edges possible. To give one possible precise definition, for an
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infinite family of graphs (Vi, Ei) we could say that the total number of edges grows sub-
quadratically (that is, |Ei|/|Vi|2 → 0 as i→∞), but for expanders we will require degree to
be constant, so that the total number of edges is O(|V |). (Readers unfamiliar with big-oh
notation should refer to Appendix A.)

Remark 1.7. While the theory of infinite graphs is interesting, covering such rich topics as
Cayley graphs for infinite groups and automorphism groups of trees, from now on we restrict
attention almost exclusively to finite graphs, as these are the graphs for which expansion is
defined.

There are many different connectivity notions for graphs, which form an essential part
of graph theory. The edges connecting vertices are the fundamental structure that graphs
have beyond simply being sets, so in some sense the connectivity properties are the raison
d’être of graphs.

The most basic connectivity property we could ask of a graph is simply called connect-
edness.

Definition 1.8. A walk between two vertices v and w in a graph is a sequence of vertices

v = v0, v1, . . . , vl−1, vl = w

such that vi is adjacent to vi+1 for i = 0, 1, . . . , l− 1. The length of such a walk is l. A walk
is called a path if the vertices are pairwise distinct, that is, vi 6= vj whenever i 6= j. Two
vertices v and w in a graph X = (V,E) are said to be connected if there is a path joining
them (or, equivalently, if there is a walk joining them). If all pairs of vertices v, w ∈ V are
connected, we say that the graph X is connected.

If a graph is not connected, it is often convenient to discuss its connected components.
For the definition of connected components, we note that in an undirected graph, the relation
of connectedness is an equivalence relation on the set V of vertices: symmetry holds by taking
a path of length zero, reflexivity follows from taking a reversed path, and transitivity follows
from concatenation of paths.

Definition 1.9. A connected component of an undirected graph is an equivalence class of
vertices under the equivalence relation of connectedness.

Connected graphs have a natural metric, usually referred to as distance. For unconnected
graphs, we can consider two unconnected vertices to be at distance +∞ from each other,
but this is not actually a metric because the distances in a metric space must be finite by
definition (although with the natural addition in R+

0 ∪ {+∞} the axioms for a metric still
hold).

Definition 1.10. The distance between two vertices v and w in a graph, denoted d(v, w),
is the length of the shortest path joining them. The distance from v to a subset A ⊆ V of
the vertices of the graph is defined to be

d(v,A) = min
w∈A

d(v, w).

Since the distance function on a graph is a “local” property of the graph (pertaining only
to the two vertices directly, and to the vertices joining them in a shortest path indirectly),
it is often natural to discuss its global maximum.

3



Figure 1.2. The boundary of a set of vertices in a graph.

Definition 1.11. The diameter of a graph X = (V,E), denoted diamX, is the maximal
distance between two vertices, that is,

diamX = max
v,w∈V

d(v, w).

Good connectivity properties are of course desirable in many networks that can be mod-
elled by graphs, from the very practical examples, such as telecommunications networks, to
the theoretical, such as transitions between different inputs to pseudorandom algorithms. If
a graph has a small diameter, we might say that it is ‘efficient’, since any pair of vertices
has a short path connecting the two vertices. However, this property alone does not capture
enough information about the connectivity of the graph. Most importantly, it is possible for
a graph to have a very small diameter but not be what we might call ‘robust’, in the sense
that the removal of a small number of vertices or edges might disconnect the graph (see
Figure 1.5 on page 10 for an example). Encapsulating both of these connectivity notions is
the boundary of a set of vertices, which will appear in the definition of expander graphs.

Definition 1.12. Let V = (V,E) be a graph and A ⊆ V a subset of its vertices. The
boundary of A, denoted ∂A, is the set of vertices in the complement of A which are adjacent
to at least one vertex in A, that is,

∂A = {v ∈ V | d(v,A) = 1}.

We will see in Proposition 1.30 exactly how large boundaries imply small diameters.
Figure 1.2 shows a set of vertices A (in black) together with its boundary vertices ∂A (in

red). The graph depicted was chosen to have its very particular planar form to illustrate the
geometric nature of the boundary. In general, graphs with such a regular geometric structure
make poor expanders (as we will explore in Section 1.7).

We need one more graph-theoretic definition.

Definition 1.13. A graph is bipartite if its set of vertices V can be partitioned into disjoint
sets A and B such that the following holds: all edges are between a vertex in A and a vertex
in B. Equivalently, no edge joins a pair of vertices in A or a pair of vertices in B.

4



1.2. Introduction to Expander Graphs

In this section we give definitions of expander graphs and expander families, illustrated
by some examples.

Throughout the rest of this chapter, we will adopt the following convention:

X = (V,E) is a k-regular graph on n vertices

for positive integers n and k.
There are many different definitions of expander graphs, but they are all equivalent up to

a change of constant (possibly after some transformation). We will present the most common
definitions and prove they are equivalent.

Our first and most important definition of expanders is as follows.

Definition 1.14 (Expander). Let c > 0. A finite k-regular graph X = (V,E) on n vertices
is called an (n, k, c)-expander if for every subset of vertices A ⊆ V with |A| ≤ n

2
,

(1.15) |∂A| ≥ c|A|.

If n and k are understood, then we will simply call X a c-expander.

Remark 1.16. Equation (1.15) means that sets A which are ‘not too large’ cannot have
boundaries that are very small relative to A. A condition like |A| ≤ n

2
must be imposed,

because otherwise as A becomes a large proportion of V , ∂A can only be very small, and
consequently c would need to be very small for large graphs (in fact, if we allowed A = V
this would force c = 0).

Lemma 1.17. Let X be a graph. Then X is a c-expander for some c > 0 if and only if X
is connected.

Proof. If a graph X is connected, then |∂A| > 0 whenever 0 < |A| < n, so since there are
only finitely many A ⊆ V , X will be a c-expander for

(1.18) c(X) := min
0<|A|≤n

2

|∂A|
|A|

> 0.

If on the other hand X is not connected, letting A be a connected component of minimal
size in X we then have ∂A = ∅ and |A| ≤ n

2
(since there must be at least 2 connected

components). �

Remark 1.19. Although Lemma 1.17 completely classifies which graphs are expanders when
taken by themselves, we wish to find large sparse graphs with the expansion coefficient c
bounded away from zero uniformly. It is applications of expanders that first motivated the
following definition. However, we can also motivate it by the observation it allows us to
move from the definition of single expander graphs, something which requires choosing an
arbitrary c, to families of expanders which can be described more ‘qualitatively’, that is,
without imposing some constant a priori.

Definition 1.20 (Family of expanders). Let k be a positive integer. Let (Xi) = ((Vi, Ei))
be a sequence of k-regular graphs such that |Vi| → ∞ as i → ∞. We say that (Xi) is an
expander family if there is some c > 0 such that each graph in this sequence is a c-expander.

5



Figure 1.3. A graph X with poor expansion.

Figure 1.3 presents a graph X which is a manifestly poor expander. If we take the
set A in Definition 1.14 to be the ‘cluster’ of vertices on the left, then we have |∂A| = 1,
but A comprises half of the vertices. Since X is connected, it will be a c-expander for some
sufficiently small positive c. However, the best possible c will be very small for a graph of this
size, and we can imagine that if we had a sequence of graphs of increasing size with similar
structure (only one edge connecting the two ‘sides’ of the vertex set) then their respective
constants c would tend to 0. (Unsurprisingly, the technical term for an edge, like the one
joining the two sides in Figure 1.3, whose deletion disconnects the graph, is a bridge.)

Example 1.21. The sequence (Kn) of complete graphs is not an expander family because
their degree is not constant.

Lemma 1.22. The sequence of cycle graphs (Cn) with n ≥ 3 is not an expander family.

Proof. Take A in Definition 1.14 to be the vertices on a path of length bn
2
c. Then if Cn is

a c-expander, we must have

c ≤ |∂A|
|A|

=
2

bn
2
c

= O(1/n)

as n→∞. �

Corollary 1.23. A family of k-regular expanders must have k ≥ 3.

Proof. As expanders are connected, they must have degree at least 2, except for the case of
graphs on 2 vertices (degree 1 graphs have the form of an even number of vertices connected
in disjoint pairs). However, up to isomorphism, the only connected 2-regular graph on n ≥ 3
vertices is the cycle graph Cn. �

Remark 1.24. As is common practice, we will abuse nomenclature and say that graphs
themselves are expanders to mean that they form a family of expanders, and likewise when
saying that graphs are not expanders (even though, as noted above, all connected graphs
are automatically c-expanders for some sufficiently small c, and could in fact be realised as
a member of an expander family by simply adding them to any existing expander family).
For example, we say that cycle graphs are not expanders.

Remark 1.25. It turns out that there are in fact expanders of degree 3 (and in certain models
of random regular graphs, almost all 3-regular graphs are expanders [HLW06, Theorem
4.16]). As a constructive example, for each prime p we construct a graph whose vertex set

6



Figure 1.4. 3-regular expanders on 13, 37 and 97 vertices.

is Fp = Z/pZ, with an edge joining each vertex x to x − 1, x + 1 and x−1 (taking 0 to be
its own inverse). This graph is illustrated in Figure 1.4 for the sequence p = 13, 37, 97.
These graphs are a family of expanders, indexed by the primes p. However the proof of
expansion depends on the Selberg 3/16 Theorem, a deep result from number theory (see
[Lub94, p.53] for details). We need to defer to Selberg’s theorem because SL(2,Z) does not
have Property (T), and so we cannot use Margulis’s construction directly (Proposition 4.1,
see also Remark 4.7). Note that while this is an explicit construction from a mathematical
point of view, it is described in [HLW06, p.453] as being only ‘mildly explicit’ (in a precise
sense defined in that paper) since there is no known efficient deterministic algorithm to
generate large primes.

Remark 1.26. An alternative way of defining expander families to Definition 1.20 would
be to require that

lim inf
i→∞

c(Xi) > 0

where c is as defined by Equation (1.18). Naturally, it is possible that a sequence (Xi) of
graphs is not an expander family for the reason that there is no uniform lower bound on the
c(Xi), even though the sequence of graphs (Xi) still has a subsequence that is an expander
family (consider for example the sequence of constants 0, 1, 0, 1, . . .). In this essay, whenever
we claim that a sequence of graphs is not an expander family, we will in fact show specifically
that limi→∞ c(Xi) = 0, so that no subsequence gives an expander family.

Remark 1.27. There is a straightforward upper bound on the expansion constant c in the
inequality (1.15). As ∂A ⊆ V \ A, we have |∂A| ≤ n − |A|. Thus for any A ⊆ V of an
(n, k, c)-expander, if |A| = bn/2c then we have

c ≤ |∂A|
|A|
≤ n− bn/2c

bn/2c
=

{
1 if n is even;

1 + 2
n−1 if n is odd.

7



In a complete graph Kn, the inequalities become equalities, and for any smaller A, that
is |A| < bn/2c, we have |∂A|/|A| > c. Thus the upper bound on c is tight.

1.3. Diameter in Expanders

We have already mentioned that good expansion guarantees that a graph is both ‘robust’
and ‘efficient’, which respectively mean that it is not easily disconnected and that any pair
of vertices has a small distance between them. In this section we pursue the second of those
notions in detail. We first define balls and spheres in graphs, which will be used to study
growth, and show that the boundary of a ball is a sphere. After this setup, we show in
Proposition 1.30 and Corollary 1.31 that expanders have logarithmic diameter, and discuss
the significance of this result.

Definition 1.28 (Balls and spheres). Let X = (V,E) be a connected, undirected graph with
metric d as defined in Definition 1.10. Let v ∈ V be a vertex of X, and r a non-negative
integer. The ball of radius r centred at v is defined to be

Br(v) = {w ∈ V | d(v, w) ≤ r}.

The sphere of radius r centred at v is defined to be

Sr(v) = {w ∈ V | d(v, w) = r}.

It is immediate from this definition that the balls partition into spheres:

Br(v) =
r⋃

r′=0

Sr′(v).

The following result, however, does require proof (for example, it is not true for arbitrary
metric spaces whose distances are integral).

Lemma 1.29. Let v be a vertex of an undirected graph X, and r ∈ N. Then

∂Br(v) = Sr+1(v).

Proof. First let w ∈ ∂Br(v). By the definition of boundary, w /∈ Br(v), so d(v, w) > r, and
there is a w′ ∈ Br(v) such that d(w′, w) = 1. Then by the triangle inequality,

d(v, w) ≤ d(v, w′) + d(w′, w) ≤ r + 1.

Thus d(v, w) = r + 1, so w ∈ Sr+1(v).
Now let w ∈ Sr+1(v). Then there is a path w,w′, . . . , v in X of length r+ 1 from w to v,

and for this w′ we have d(w,w′) = 1. This path also gives a path of length r from w′ to v, so
that w′ ∈ Br(v). As Br(v) and Sr+1(v) are disjoint, d(w,Br(v)) > 0. Thus d(w,Br(v)) = 1,
that is, w ∈ ∂Br(v). �

Proposition 1.30. Let X = (V,E) be an (n, k, c)-expander. Then

diam(X) ≤ 2

log(1 + c)
log n.

The proof we now present follows [KS11, p.97].
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Proof. Let v1, v2 ∈ V be two arbitrary vertices of X. Because X is an expander it is
connected. So any vertex w ∈ V is joined to v1 by a path, which must have length at
most n − 1 (by definition, a path consists of distinct vertices). So d(v1, w) ≤ n − 1. Hence
Bn−1(v1) = V and thus

{v1} = B0(v1) ⊆ B1(v1) ⊆ B2(v1) ⊆ · · · ⊆ Bn−1(v1) = V.

Since |V | > n
2

we can then define r1 to be the least positive integer r such that

|Br(v1)| >
n

2
.

Define r2 similarly, with respect to v2. For any r < r1 we have |Br(v1)| ≤ n
2
, so by Lemma 1.29

and the expansion of X we have

|Br+1(v1)| = |Br(v1)|+ |Sr+1(v1)|
= |Br(v1)|+ |∂Br(v1)|
≥ (1 + c)|Br(v1)|.

As |B0(v1)| = 1, a trivial induction gives

|Br1(v1)| ≥ (1 + c)r1 .

Since |Br1(v1)| ≤ n, we now have

r1 ≤ log1+c n =
log n

log(1 + c)

and similarly the same upper bound holds for r2.
Because |Br1(v1)|+ |Br2(v2)| > n, these two balls cannot be disjoint, that is, there exists

w such that d(v1, w) ≤ r1 and d(v2, w) ≤ r2. Thus

d(v1, v2) ≤ d(v1, w) + d(w, v2) ≤
2

log(1 + c)
log n.

As v1 and v2 were arbitrary, we conclude that

diam(X) ≤ 2

log(1 + c)
log n. �

Corollary 1.31. (Expanders have logarithmic diameter) Let (Xi) = ((Vi, Ei)) be a family
of expanders. Then

diam(Xi) = O(log |Vi|).
�

Remark 1.32. This corollary is a very simple example of the kind of results that follow
from the definition of an expander family. In this way, it validates the definition of expander
families. It is only because we have a fixed lower bound on the expansion constants of all the
graphs Xi that we can make such a statement: the big-oh notation hides a constant which
depends on the constant of expansion c.

Remark 1.33. The diameter of expanders is optimal in the sense that any family of graphs
where the vertices have uniformly bounded degree must have at least logarithmic diameter.
The proof of this is very similar to the proof of Proposition 1.30 above, noting that if k is
an upper bound on degree then |∂A| ≤ (k + 1)|A| for all A ⊆ V . One might wonder if the
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Figure 1.5. The ball of radius 6 in the 3-regular tree.

converse to Corollary 1.31 holds, that is, whether a family of graphs of logarithmic diameter
is necessarily a family of expanders. The converse however is false, and it is not too difficult
to find families of graphs with logarithmic diameter that are not expanders. (Indeed, since
the problem of constructing expanders turns out to be so difficult, constructing such counter-
examples is essentially the same problem as finding large regular graphs with logarithmic
diameter.) A very natural way to construct such examples is to take symmetric trees of
constant degree for internal vertices and join the leaves to fill them out to be regular. As
the simplest example, we can take balls of radius r inside the 3-regular tree, joining the
leaf nodes in local cycles of length 4, as illustrated for r = 6 in Figure 1.5. The number of
vertices in the balls grows exponentially in r, whereas the diameters of the balls are 2r, so
that they have logarithmic diameter. On the other hand, if we take A in Definition (1.14) as
one particular branch at the root, comprising roughly 1/3 of the vertices but with boundary
∂A containing only the root, we see that these graphs will not form a family of expanders.
So in summary, expansion is strictly stronger than logarithmic (that is, optimal) diameter.

1.4. Alternative Definitions of Expansion

In this section, we consider ‘edge expansion’, the expansion of a graph in terms of the
number of edges connecting a subset of its vertices to the rest of the graph, as opposed to
Definition 1.14 which we might call ‘vertex expansion’. After this, we consider a definition
of expansion for bipartite graphs. We will show that these definitions are all equivalent, up
to suitable change of constants and transformations.

Definition 1.34 (Edge expansion). Let X = (V,E) be a finite graph. Define the Cheeger
constant (or isoperimetric constant) of X, denoted h(X), by

h(X) = min
AtB=V

|E(A,B)|
min(|A|, |B|)

where the (outer) minimum runs over all partitions V = A t B, and E(A,B) is the set of
edges between vertices in A and vertices in B.

10



Remark 1.35. We call h(X) the Cheeger constant in analogue with the Cheeger constant
of a Riemannian manifold M , the minimal ratio of the area of a hypersurface that divides
M into two disjoint pieces to the smaller of the volumes of those pieces (see [Cha84, p.95]
for further details). We will see in the next chapter that the analogy is not superficial, and
that bounds relating the Cheeger constant of a manifold to the eigenvalues of its Laplacian
have their counterparts for the Cheeger constant of a finite graph and the eigenvalues of its
adjacency matrix (or, equivalently, the graph Laplacian).

We could now define an expander family to be a sequence (Xi) of graphs such that the
sequence (h(Xi)) of Cheeger constants is bounded away from zero. Naturally, we would like
to know if this is equivalent to our previous definition of an expander family (Definition 1.20).
The following proposition relates the different expansion constants of a single graph, which
will give us the desired equivalence of definitions of expander families.

Proposition 1.36 (Bounds between expansion constants). For a k-regular graph X,

h(X)

k
≤ c(X) ≤ h(X).

Proof. Suppose V = AtB is a partition of the vertices. Without loss of generality, we may
assume that |A| ≤ |B| and thus |A| ≤ n

2
.

Since to each vertex b ∈ ∂A ⊆ B there corresponds at least one edge (a, b) ∈ E(A,B),
we have |∂A| ≤ |E(A,B)|.

As X is k-regular, for each vertex b ∈ ∂A there are at most k edges incident to b, and in
particular there can be at most k edges of the form (a, b) ∈ E(A,B). Thus |E(A,B)| ≤ k|∂A|.

Putting these together, we have

1

k
· |E(A,B)|

min(|A|, |B|)
≤ |∂A|
|A|
≤ |E(A,B)|

min(|A|, |B|)
.

As this holds for any partition with |A| ≤ n
2
, taking minima over all such partitions gives

1

k
h(X) ≤ c(X) ≤ h(X). �

Corollary 1.37 (Equivalence of vertex and edge expansion). Vertex and edge expansion
are equivalent, that is, a family of k-regular graphs is a family of vertex expanders (in the
sense of Definition 1.14) if and only if it is a family of edge expanders (that is, the Cheeger
constants as defined in Definition 1.34 are bounded away from zero). �

Remark 1.38. Note that the equivalence of vertex and edge expansion depends very essen-
tially on the fact that the degree of vertices is bounded (actually a constant k). For example,
the trees of diameter 2, which are also known as the star graphs, in which one central vertex
is joined to all the other vertices, have good edge expansion but poor vertex expansion.

Our third and final combinatorial definition of expanders is for bipartite graphs. While
we will only use this definition for the proof of existence below, it is useful in general, and
theoretical computer scientists are mostly interested in bipartite expanders. The following
definition is taken from [Lub94, p.2].

11



Definition 1.39 (Bipartite expanders). Let c > 0. An (n, k, c)-bipartite expander X =
(V,E) is a bipartite, k-regular graph with V = I t O such that the edges go from I to O,
|I| = |O| = n and for any A ⊂ I with |A| ≤ n

2
we have

|∂A| ≥ (1 + c)|A|.
(The two sets I and O are named for input and output.)

Compared with Definition 1.14, the idea is that since ∂A ⊆ O which is disjoint from I,
rather than requiring the boundary ∂A to be not too small relative to A, we instead require
it to be larger by some fixed proportion.

We turn now to the equivalence of Definitions 1.39 and 1.14. Here we are using the term
‘equivalence’ rather loosely; there is implicit transformation of graphs involved.

Moving from vertex expansion (Definition 1.14) to bipartite vertex expansion (Defini-
tion 1.39) is straightforward. One simply takes the extended bipartite double cover.

Definition 1.40 (Bipartite double cover). Let X = (V,E) be a graph. The bipartite double
cover of X is a graph whose vertex set is

∪i∈{0,1}V = {v0 : v ∈ V } ∪ {v1 : v ∈ V }
and which has two edges, of the form {v0, w1} and {v1, w0}, corresponding to each edge
{v, w} ∈ E.

The extended bipartite double cover of X is obtained by taking the bipartite double cover,
and adding an edge {v0, v1} for each vertex v ∈ V (which we may think of joining each vertex
to its twin).

Remark 1.41. The bipartite double cover is indeed a 2-sheeted cover of the graph X as a
topological space. This is also true for the bipartite double cover of a multigraph X.

Transforming a bipartite expander in the sense of Definition 1.39 into an expander as in
Definition 1.14 is more difficult. It requires identifying vertices in I with vertices in O. A
perfect matching in a bipartite graph is a partitioning of the vertices into pairs of adjacent
sets (or alternatively, a subset E ′ of the edges such that each vertex is incident to precisely
one edge e ∈ E ′). Hall’s ‘Marriage Theorem’ can be phrased as follows:

Theorem 1.42 (Hall 1935, [Die00, Theorem 2.1.2]). Let X be a bipartite graph with edges
going between vertex sets I and O, where |I| = |O|. There exists a perfect matching in X if
and only if |∂A| ≥ |A| for all A ⊆ I.

Using this theorem (which we shall not prove),associate a distinct neighbour w ∈ O to
every v ∈ I. We note that applying the theorem does not actually need the expansion
property, only the regularity of the graph (and |I| = |O| of course): the k|A| edges leaving
A must hit at least |A| vertices in B, as each vertex in B is incident to at most k of these
edges. By identifying these pairs of the matching, we get a graph on n vertices.

Remark 1.43. The perfect matching whose existence is guaranteed by Hall’s Theorem is not
canonical. Moreover, different identifications can result in non-isomorphic quotient graphs,
even for small cases such as the cycle graph C4.

Proposition 1.44. If a graph is a c-expander, then its extended double cover is a c-bipartite
expander. If a graph is a c-bipartite expander, then the graph formed by identifying vertices
in a perfect matching is a c-expander.
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1.5. Existence of Expanders

Pinsker first showed the existence of expander graphs in [Pin73]. In the style of Erdős—
who used probabilistic methods to establish the existence of various combinatorial objects
— Pinsker considered a model of random regular graphs, and showed that the probability
that such a random graph is an expander is non-zero for sufficiently large n. In fact, the
probability tends to 1. In this section we follow the example of Pinsker and develop a model
of random regular graphs, and use it to prove the existence of expanders.

This line of thinking raises a natural but difficult question: how should one model a
random regular graph?

Perhaps a nice way to do this would be to consider each isomorphism class of k-regular
graphs on n vertices to be equiprobable. However, there is not even a known formula for
the number of such isomorphism classes in general! So we model a k-regular bipartite graph
on 2n vertices as follows. The vertices are labelled I = {v1, . . . , vn} and O = {w1, . . . , wn}.
We take k permutations π1, . . . , πk ∈ Sn, drawn uniformly (each permutation is chosen with
probability 1

n!
) and independently. Then for each 1 ≤ i ≤ n and 1 ≤ j ≤ k we create an

edge joining vi and wπj(i). (The random graphs generated are very likely to be multigraphs:
even for n = 2 we are just asking about the probability that a random permutation is a
derangement, which is approximately 1/e.)

The following theorem is adapted from [Lub94, Proposition 1.2.1] (which in turn follows
the presentation in Sarnak’s book [Sar90, pp.64-65]). That proposition claims the result to
hold true for k = 5, however the bound on probability actually diverges to infinity in that
case, so the proofs are erroneous in the case k = 5. Moreover, it is claimed that a certain
function R(t), which we will define below, is decreasing for 1 ≤ t < n

3
. This claim is not

true, even after ignoring the small variations owing to the parity of t. (In fact, if k = 6 then
the minimum of R(t) is at n

5
approximately.) A proof with all the details would be too long

to include here; the reader is referred to [HLW06, pp.478-481]. We sketch the proof from
Lubotzky’s book.

Theorem 1.45 (Existence of expander families). Let k ≥ 6 be a positive integer and c = 1
2
.

Then the probability that a random k-regular multigraphs on n vertices, drawn from the
model described above, is a c-expander tends to 1 as n → ∞. In particular, families of
c-expanders exist.

Proof sketch. Consider sets A ⊆ I with |A| = t ≤ n
2

and B ⊆ O with |B| = m = b3
2
tc.

Let P (t) be the probability that for a random k-regular bipartite expander, ∂A ⊆ B. We
compute that

P (t) =

(
m!(n− t)!
(m− t)!n!

)k
.

Let Q(t) be the number of choices of such A and B. Then

Q(t) =

(
n

t

)(
n

m

)
.
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Put R(t) = Q(t)P (t). Then a very crude upper bound on the probability that a random
k-regular bipartite graph on n vertices is not a c = 3

2
expander is

Pn =
∑

1≤t≤n
2

R(t).

It now remains to show that Pn → 0 as n→∞.
For small values of t, the probability P (t) is large whereas Q(t) is small. The opposite

is true for values more of the order of n
3
≤ t ≤ n

2
. One can verify that R(t) is roughly

decreasing for small values, so the maximum occurs at R(1). For the large values, we
compare R(t) to R(n

2
) which we can approximate to within a constant factor by Stirling’s

formula (Example A.8). Then for all t we have

R(t) ≤ R(1) +R
(n

3

)
+R

(n
2

)
= o

(
1

n

)
so that Pn → 0. �

1.6. Cayley Graphs

Cayley graphs give a means to construct graphs from groups. The construction of ex-
panders due to Margulis, which is the main objective of this essay and will be presented in
Chapter 4, is a family of Cayley graphs. There are many reasons why it is natural to use
Cayley graphs to construct expanders. As well as being regular graphs by definition, they
enable us to construct large graphs in an effective and concise manner; it can be much easier
to describe the group than the graph. Before describing some previously-encountered graphs
as Cayley graphs, we give the definition and some first remarks.

Definition 1.46 (Cayley Graph). The Cayley graph of a group G with respect to a gener-
ating set S ⊆ G is the directed graph whose vertex set is G and whose edges are given by
(g, gs) for each g ∈ G and s ∈ S. It is denoted by Cay(G,S).

Remark 1.47. The Cayley graph will be simple (that is, loop-free) if and only if 1 /∈ S.
Since for any distinct s, s′ ∈ S we have gs 6= gs′, it follows that the edges of Cay(G,S)

are distinct (so it is not a multigraph).
Because S generates G, every g ∈ G can be written as a word s1s2 · · · sl in the generators

S and their inverses, and is reachable from 1G by the path

1G, s1, s1s2, s1s2s3, . . . , s1s2 · · · sl = g.

Thus Cay(G,S) is connected.
Finally, we say that S ⊆ G is symmetric if

S = S−1 := {s−1 | s ∈ S}.
If S is symmetric, then we can identify Cay(G,S) with an undirected graph. This is because
to each directed edge (g, gs) there corresponds a reversed edge

(gs, (gs)s−1) = (gs, g).

(This is still true if s−1 = s.) This undirected graph is |S|-regular. Usually, we will have S a
symmetric generating set which does not include the identity, so that the graph Cay(G,S)
is a simple, connected, undirected graph.
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Remark 1.48. As expanders are finite graphs, we are only interested in the Cayley graphs
of finite groups (note that the number of vertices in Cay(G,S) is |G|). These finite groups
might, however, be obtained as subgroups or quotients of infinite groups, so it is certainly
not the case that we will consider only finite groups in this essay.

Remark 1.49. It is arguably more common to consider left group actions. The reason we
define the Cayley graph by right-multiplication of the vertices g ∈ G by the generators s ∈ S
is so that the action of G on itself by left-multiplication induces a graph isomorphism (the
element h ∈ G maps any edge (g, gs) to the edge (hg, hgs)).

Examples 1.50. The families of graphs from Examples 1.2, which were illustrated in Fig-
ure 1.1 on page 2, can be constructed as Cayley graphs as follows.

a) The Cayley graph for the group Z/nZ with respect to the generating set S = {1,−1}
is the cycle graph Cn.

b) The group Z/nZ taken with the generating set S = {1, 2, . . . , n− 1} consisting of all
non-zero elements has the Cayley graph Kn.

c) The Cayley graph for the direct product of n groups of order 2,

G =
n⊕
i=1

Z/2Z,

with the n generators

S = {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}
is the nth hypercube graph Qn.

As previously mentioned, none of these is an expander.

We will now turn to some general negative results for expansion of Cayley graphs.

1.7. Some Negative Results for Cayley Graph Expansion

As expanders resemble random graphs, we might expect that groups which are very
uncomplicated would not give expanders. In this section we will prove some results which
establish the veracity of this intuition to some extent, first in the case that our particular
notion of ‘uncomplicated’ is ‘abelian’.

Theorem 1.51 (Abelian groups do not give expanders). Let (Gi) be a family of abelian
groups with respective generating sets Si of constant cardinality k. Then the graphs Cay(Gi, Si)
are not a family of expanders.

Proof. We may assume without loss of generality that Si is symmetric, because we can take
Si ∪ S−1i otherwise (possibly taking some generators more than once so as to get 2k-regular
Cayley graphs). Let S = {s1, . . . , sk}. Then the balls in the graph can be written

Bm(0) =

{
a1s1 + · · ·+ aksk

∣∣∣∣∣ ai ≥ 0,
k∑
i=1

ai ≤ m

}
.

So the size of Bm(0) is bounded by the number of ways of writing an integer l ≤ m as the
sum of non-negative integers a1, . . . , ak, summed over all possible l. For each fixed l, this is
simply making an unordered selection of l objects of k types, with repetition allowed. (The

15



fact that this selection is unordered is very important, and is where the fact that the group
is abelian enters.) It is well-known that this is(

l + k − 1

k − 1

)
.

We can derive this result by noting that such selections of l objects of k types are in bijection
with sequences of l + k − 1 symbols, k − 1 of which are −’s and which delimit the blocks
comprising some of the l ◦’s, the blocks encoding how many of that particular item appears in
the selection. For example, the selection (1, 2, 0, 1) is represented by the sequence ◦−◦◦−−◦.

We have (
l + k − 1

k − 1

)
≤ (l + k − 1)k−1

(k − 1)!
≤ 2k

(k − 1)!
lk−1

for l ≥ k − 1.
We then have that

|Bm(0)| ≤
m∑
l=0

(
l + k − 1

k − 1

)
≤

k−1∑
l=1

(
l + k − 1

k − 1

)
+

m∑
l=k

2k

(k − 1)!
lk−1 ≤ 2k

(k − 1)!
mk + C

for a constant C. Thus |Bm(0)| = O(mk), where the implied constant depends only on k, and
not on the particular abelian group whose Cayley graph we are considering. However, the
balls in an expander must grow exponentially (until the comprise at least half the vertices,
which will only be an problem for finitely many of the Cayley graphs) as seen in the proof
of Proposition 1.30. Thus Cay(Gi, Si) is not a family of expanders. �

One can generalize Theorem 1.51 to solvable groups with Theorem 1.53. Solvable groups
are a class of groups which can be understood as being ‘approximately abelian’. We first
recall the definition of solvable groups.

Definition 1.52. A group G is solvable if its derived series G(n), defined recursively by
G(1) = G and G(n+1) = [G(n), G(n)], terminates at the trivial group after finitely many steps.
That is, there exists a minimal positive integer l called the derived length of G such that
G(l) = {1}.

Theorem 1.53. Let (Gi) be a sequence of finite groups with respective generating sets Si
of constant cardinality k. Let l be a positive integer. Suppose that for all n, we have that
Gi is solvable with derived length at most l. Then the graphs Cay(Gi, Si) are not a family
of expanders.

The theorem appears in Krebs and Shaheen [KS11, Theorem 4.47], and is originally due
to Lubotzky and Weiss [LW93, Corollary 3.3] (who give it as a corollary to a non-expansion
result for quotients of a finitely generated amenable group). We do not prove this theorem as
it requires some inheritance results on Cayley graph expansion for subgroups and quotients,
which despite not being difficult we do not develop here so as not to stray too far from our
path towards the constructions of Chapter 4.

Example 1.54. Finite dihedral groups do not give expanders, as they have derived series
of length 2.
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Remark 1.55. Theorem 1.53 is essentially the only result known about when it is impossible
to choose generating sets to construct a family of expanders as the Cayley graphs of a given
family of groups [Kas09]. We will see that in contrast the Margulis construction does work
for any fixed set of generators of the group with Property (T) that is used.

The preceding remark on generators raises the question of whether expansion is in fact a
group property; Lubotzky and Weiss presented the problem as follows [LW93, Problem 1.1].

Problem 1.56. Let (Gi) be a family of finite groups, with 〈Si〉 = 〈S ′i〉 = Gi and |Si|, |S ′i| ≤
k for all i. Does the fact that (Cay(Gi, Si)) is an expander family imply the same for
(Cay(Gi, S

′
i))?

This question was answered in the negative by Alon, Lubotzky and Wigderson in [ALW01].
Their counterexample is beyond the scope of this essay. As noted in [HLW06, p.536], the
more recent paper [Kas07] provides a simpler counterexample. In this paper Kassabov an-
swered what had been a big open problem for decades, by demonstrating that for certain
generating sets, the alternating groups An and symmetric groups Symn give expanders. How-
ever, one can show that for instance, the generating sets Sn = {(1 2), (1 2 . . . n)±1} do not
make Cay(Symn, Sn) expanders.

Remark 1.57. Expander families are defined by some texts to have uniformly bounded,
rather than constant, degree. For instance, the original presentation of Problem 1.56 by
Lubotzky and Weiss was for uniformly bounded degree. However, this does not change the
problem essentially. In one direction, graphs with constant degree trivially have uniformly
bounded degree. In the other direction, if a family of expanders has uniformly bounded
degree, we can add edges to obtain constant degree graphs (or, perhaps necessarily, constant
degree multigraphs), which only possibly improves their expansion properties.

As a technicality, if the bound on degree is k, we can generally just add an edge between
vertices of degree less than k until each graph is k-regular, possibly introducing loops. How-
ever, when nk is odd we will have to go to a (k + 1)-regular graph (the handshaking lemma
requires that the sum of degrees is even, being twice the number of edges).

Since we are mostly concerned with Cayley graphs, we will restrict attention to regular
graphs.

1.8. Expansion in SL(2,Z/pZ)

It is a corollary of the Selberg 3/16 Theorem that the Cayley graphs of SL(2,Z/pZ) have
logarithmic diameter. We present here the results of original computations to determine the
diameters of these groups, which reveal a surprisingly well-behaved growth, in light of the
very sophisticated result used to get the logarithmic bound. Lubotzky gave the following
problem.

Problem 1.58 ([Lub94, Problem 8.1.2]). Does there exist a polynomial time algorithm

(polynomial in log p) which expresses an element of SL(2,Z/pZ) (say

(
1 p−1

2
0 1

)
) as a short

word (say less than 1000 log p) in A =

(
1 1
0 1

)
and B =

(
0 1
−1 0

)
?
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Figure 1.6.

Larsen gave a randomized algorithm to construct short word representations, but of
length O(log p log log p) rather than O(log p) [Lar03], which so far as we know is the only
work on this problem [Lub12].

The lengths of the shortest word representation of

(
1 p−1

2
0 1

)
in {A±1, B±1} of Prob-

lem 1.58 are plotted in Figure 1.6, for all primes up to the order of 1000. The results for the
diameter of the entire Cayley graphs was similar, albeit with a little more fluctuation.
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Chapter 2

Random Walks on Expanders

In this chapter we show that expanders can be characterised by the property that a
random walk on their vertices converges to the limit distribution quickly. This allows ef-
ficient pseudorandom sampling, which gives a means to reduce the probability of error for
a randomized algorithm just as rapidly as repeated random sampling, but with very little
additional use of the random resource.

We begin with a discussion of random walks in Section 2.1. This leads naturally into a
study of spectral graph theory in Section 2.2. With this background, we can give a motivated
definition of spectral expansion, and relate it to the equivalent combinatorial expansion of
the previous chapter. We then conclude the chapter with the application of expanders to
derandomization in Section 2.3.

Throughout this chapter, all graphs are assumed to be undirected.

2.1. Random Walks and the Graph Spectrum

In this section we introduce random walks on graphs and the adjacency matrix.
A very useful mathematical concept is that of a random walk. On a graph, a random

walk moves between adjacent vertices at random.

Definition 2.1 (Random walk, [HLW06, Definition 3.1]). A random walk on a finite graph
X = (V,E) is a discrete-time stochastic process (X0, X1, . . . ) taking values in V . The vertex
X0 is sampled from some initial distribution on V , and Xi+1 is chosen uniformly at random
from the neighbours of Xi.

Remark 2.2. Perhaps the first question to ask about a random walk is what its long term
behaviour is. In order to study this, we will need to know how the probability distribution
of the walk evolves with time.

Let X = (V,E) be a k-regular graph on n vertices. Suppose that x is a probability
distribution vector that describes a random vertex on the graph at some point in a random
walk, that is, x = (x1, . . . , xn) where each xi ≥ 0 and

∑n
i=1 xi = 1, and xi is the probability

that vertex vi is chosen. The probability that walk will be at vertex vi at the next time step
is

1

k

∑
{vi,vj}∈E

xj

We see that this is a linear operator on Rn. This motivates the following definition.
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Definition 2.3 (Adjacency Matrix). The adjacency matrix A(X) of a graph X is defined
as follows. Label the vertices v1, . . . , vn. Then the (i, j) entry of the matrix is

A(X)ij =

{
1 if vi and vj are joined by an edge;

0 otherwise.

More generally, for a multigraph X, A(X)ij is the number of edges between vi and vj.

Remark 2.4. As we have the running assumption in this chapter that graphs are undirected,
the adjacency matrix will be symmetric.

(The interpretation of A as a linear operator still works for non-regular graphs, and for
multigraphs, we just need to normalize each column individually.)

For convenience, we will often prefer to discuss the normalized adjacency matrix Â = 1
k
A.

Then Âij is the probability that a random walk at vertex j will step to the vertex i, so Â
is precisely the linear operator described in Remark 2.2. The probability that the random
walk will be at vertex i one time step after the distribution x is

(Âx)i =
n∑
j=1

Âijxj.

It is not hard to see that if x = u = 1
k
(1, 1, . . . , 1), the uniform distribution, then Âx = x,

that is, x is an eigenvector of Â with eigenvalue 1. The uniform distribution is stationary.
We might imagine that a random walk will always tend towards this stable distribution. To
understand whether this is the case, that is, whether the sequence x, Âx, Â2x, . . . will always
tend towards u, we need to study the other eigenvalues of Â.

Throughout the rest of the chapter:

Let u = ( 1
n
, . . . , 1

n
) denote the uniform distribution probability vector.

2.2. Spectral Expansion

In this section we introduce the graph spectrum and study its most basic properties, and
relate the spectral gap to the combinatorial expansion of the graph.

Recall the Real Spectral Theorem [Axl97, Theorem 7.13].

Theorem 2.5. Suppose that V is a real inner-product space and T is a linear operator
on V . Then V has an orthonormal basis consisting of eigenvectors of T if and only if T is
self-adjoint.

In the language of matrices, this means that since the adjacency matrix A(X) of an
undirected graph X on n vertices is symmetric, it will have n real eigenvalues (counting
multiplicities) and that the corresponding eigenvectors are orthogonal. We can study a
graph via its corresponding eigenvalues, that is, the spectrum of the graph.

Remark 2.6. Spectral graph theory is an area of mathematical research in its own right.
Many useful properties of a graph can be inferred from its spectrum, as we shall soon see.
Similar matrices have the same spectrum: if v is a λ-eigenvector of A and P is invertible,
then P−1v is a λ-eigenvector for P−1AP since

(P−1AP )(P−1v) = P−1Av = P−1(λv) = λ(P−1v).
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In particular, this means that the spectrum of a matrix is invariant under conjugation by
a permutation matrix. Thus it makes sense to talk about the spectrum of a graph, since
it is independent of the particular labelling v1, . . . , vn of the vertices used to write down a
particular adjacency matrix (as changing from the matrix corresponding to one particular
labelling to another is achieved by conjugation by a permutation matrix).

Lemma 2.7. Let X be a k-regular graph on n vertices, with adjacency matrix A. Let the
spectrum of A be λ1 ≥ λ2 ≥ · · · ≥ λn. Then

a) λ1 = k;
b) λ2 = k if and only if X is not connected; and
c) λn ≥ −k with equality if and only if X has a bipartite graph as one of its connected

components.

Proof. Let u = ( 1
n
, . . . , 1

n
). The entry (Au)i is the sum over all vertices vj of 1

n
times the

number of edges between vi and vj. Since vi has degree k, we see that (Au)i = k
n
, and

Au = ku.
Since the sum of all entries in A is nk, every eigenvalue of A must have absolute value at

most k. If X is not connected, then A will have invariant subspaces corresponding to different
connected component, and a suitably chosen (to be orthogonal to u) linear combination of
characteristic functions for the spaces will give a second k-eigenvector. Conversely, supposing
that we a second k-eigenvector v, as u and v are orthogonal and v is non-zero, v must have
both positive and negative entries. But then the vertices corresponding to the maximal
(positive) entry in v can only be joined to other such vertices, and this gives a disconnection
of X.

Similarly, if X is bipartite with edges between A and B, the regularity of the graph
implies |A| = |B| and then the vector (vi) = 1A− 1B will be a (−k)-eigenvector. Conversely,
with a (−k)-eigenvector v orthogonal to u, we can conclude that all vertices corresponding
to the maximal entry of v must be joined only to the vertices corresponding to the minimal
(negative) entry of v, and vice versa, so the graph has a bipartite connected component. �

Proposition 2.8. Let X be a regular graph. If X is connected and non-bipartite, then any
random walk on X tends to the uniform distribution.

Proof. By Lemma 2.7, u = v1 is a eigenvector corresponding to the eigenvalue λ1 = 1 of
Â, and all other eigenvalues satisfy |λ| < 1. As the eigenvectors form a basis, any initial
probability vector can be written as

p = u+ a2v2 + · · ·+ anvn

where the coefficient of u must be 1 since 〈p, u〉 = ‖u‖2. Then

Âsp = u+ λs2a2v2 + · · ·+ λsnanvn → u

as s→∞. �

The rate of convergence in the above proposition depends on the ‘spectral gap’ of the
adjacency matrix, k − max{|λ2|, |λn|}. It turns out that having a large spectral gap is
equivalent to being a combinatorial expander (in the sense of Definition 1.14). With this in
mind, we give a definition of spectral expanders.
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Definition 2.9 (Spectral expansion). Let X be a k-regular graph on n vertices. Let the
spectrum of X be λ1 ≥ λ2 ≥ · · · ≥ λn. Then X is a (n, k, α)-expander if |λ2|, |λn| ≤ αλ1.

Remark 2.10. From Lemma 2.7, we know a regular graph will be an (n, k, α)-expander
for some α < 1 if and only if the graph is connected and not bipartite. This is exactly
like Lemma 1.17 that classifies graphs that are c-expanders for c > 0 as connected graphs,
and again we note that we require infinite families for which the spectral gap is uniformly
bounded away from zero.

Theorem 2.11. Let X = (V,E) be a finite, connected, k-regular graph and let λ be its
second eigenvalue. Then

k − λ
2
≤ h(X) ≤

√
2k(k − λ).

Proposition 2.12 (Spectral expansion implies combinatorial expansion). Let X, k and λ
be as in Theorem 2.11. Then

h(X) ≥ k − λ
2

.

Proof. Consider a partition V = A t B with |A| ≤ |B| such that h(X) = |E(A,B)|/|A|.
The vector (vi) defined by

vi =

{
b if vi ∈ A
−a if vi ∈ B

will be orthogonal to u. The rest of the proof is left as a straightforward computational
exercise of relating E(A,B) to λ via considering Av− kv (it is similar to a part of the proof
of Proposition 4.1). �

Proposition 2.13 (Combinatorial expansion implies spectral expansion). Let X, k and λ
be as in Theorem 2.11. Then √

2k(k − λ) ≥ h(X).

Proof. See [HLW06, pp.475-477]. �

Remark 2.14. Although qualitatively graphs are combinatorial expanders (as in Defini-
tion 1.14) if and only if they are spectral expanders (as in Definition 2.9), there is no direct
quantitative relationship between the particular expansion constants, namely the Cheeger
constant and the spectral gap. By this we mean that although there are the bounds of
Theorem 2.11, neither is a function of the other. Indeed, there are efficient algorithms to
compute the eigenvalues of a matrix, but computing the Cheeger constant is co–NP–hard
(as first proved by Blum et al. in [BKV81]). Another way in which combinatorial and spec-
tral expansion differ quantitatively is in terms of extremal properties. The best expansion
for combinatorial expanders is an open problem [Lub94, Problem 10.1.1], but there is an
upper bound on the spectral gap, which is attained by the Ramanujan graphs of Lubotzky–
Phillips–Sarnak [LPS88] and independently Margulis [Mar88]. The bound is as follows.

Proposition 2.15 (Alon–Boppona, [Lub94, Proposition 4.2.6]). Let Xn be a family of k-
regular graphs, where k is fixed and n is the number of vertices of the graphs, and n→∞.
Then

lim sup
n→∞

λ1(Xn) ≤ k − 2
√
k − 1.

22



2.3. Efficient Error Reduction for RP

This section is dedicated to the application of expanders that allows us to derandomize
algorithms, that is, to alter a randomized procedure to use the random resource less. This
hinges on Theorem 2.16, which gives a quantitative basis to the slogan that ‘a random walk
on an expander resembles independent sampling’. Note that this is a result in linear algebra,
and we will only consider the graph through its adjancency matrix. Accordingly, we use vi
to denote vector components, rather than vertices of a graph.

An important implication is that a random walk on an expander is very unlikely to stay
confined in a particular subset of the vertices. In order to quantify this, let (B, s) denote the
event that a random walk is confined to B over s time steps, that is, that V1, V2, . . . , Vt ∈
B. A result due to Ajtai–Komlós–Szemerédi and Alon–Deige–Wigderson–Zuckerman is the
following. We follow [HLW06, pp.462-463] closely in the following presentation.

Theorem 2.16. LetG be an (n, k, α)-graph and B ⊂ V with |B| = βn. Then the probability
of the event (B, s) is bounded by

Pr[(B, s)] ≤ (β + α)s.

Lemma 2.17. Let P denote the orthogonal projection onto B. The probability of the event
(B, s) is given by

Pr[(B, s)] = ‖(PÂ)sPu‖1.

Proof. The matrix entry Âxy is the probability that a random walk at vertex x will step

to vertex y, and so the entry (PÂ)xy is the probability that a walk at x will step to y and
that y ∈ B. Thus the probability that a walk of length s starting at x will be confined to
to B and end at vertex y is the (x, y) entry of (PÂ)t. So finally, summing over all possible
terminal vertices y for a uniformly at random x gives that the probability of the event (B, s)

is ‖(PÂ)sPu‖1. �

Lemma 2.18. For any vector v,

(2.19) ‖PÂPv‖2 ≤ (β + α)‖v‖2.

Proof. We may assume that Pv = v, or equivalently that v is supported on B, as otherwise
replacing v with Pv will leave the left-hand side unchanged while only possibly decreasing the
right-hand side. We can also assume similarly that all the components v = (vi) satisfy vi ≥ 0,
because replacing each component vi with its absolute value |vi| will leave the right-hand
side unchanged while only possible increasing the left-hand side, as each contribution(

n∑
j=1

(PÂP )ijvj

)2

≤

(
n∑
j=1

(PÂP )ij|vj|

)2

since all matrix entries (PÂP )ij are non-negative (the same being true of both P and Â).
Now since Equation (2.19) holds for v = 0 and both sides are linear, we may assume that in
fact

∑n
i=1 vi = 1. We can thus write v = u + z where 〈u, z〉 = 0, that is,

∑n
i=1 zi = 0 (and

u = ( 1
n
, . . . , 1

n
) as defined above). Since Pv = v and u is a 1-eigenvector for Â (Lemma 2.7),

we have
PÂPv = PÂu+ PÂz = Pu+ PÂz.
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So by the triangle inequality,

‖PÂPv‖2 ≤ ‖Pu‖2 + ‖PÂz‖2.

We now prove that ‖Pu‖2 ≤ β‖v‖2 and ‖PÂz‖ ≤ α‖v‖2, which together imply the claim.
The component (Pu)i is 1

n
if i ∈ B and 0 otherwise, and thus

(2.20) ‖Pu‖22 = |B| ·
(

1

n

)2

=
β

n
.

Since v is supported on B by assumption, 〈Pu, v〉 =
∑n

i=1
1
n
vi = 1

n
. Now the Cauchy–

Schwartz inequality (Lemma 3.12) gives

1

n
= 〈Pu, v〉 ≤ ‖Pu‖2 ‖v‖2

so that multiplying both sides by n ‖Pu‖2 and substituting (2.20) leaves

‖Pu‖2 ≤ β ‖v‖2 .

For the other term, since u and z are orthogonal, z is a linear combination of eigenvectors
of Â with corresponding eigenvalues of absolute value at most α, so ‖Âz‖2 ≤ α ‖z‖. It is

immediate from the definition of P as a projection that ‖PÂz‖2 ≤ ‖Âz‖2. Since v =
u + z with u and z orthogonal, ‖z‖2 ≤ ‖v‖2. Putting all these inequalities together we get

‖PÂz‖2 ≤ α ‖v‖2. �

Proof of Theorem 2.16. Since P 2 = P , which is both easy to check and true in general
of projections, we have by Lemma 2.18 that

‖(PÂ)sPu‖2 = ‖(PÂP )(PÂ)s−1Pu‖2 ≤ (β + α)‖(PÂ)s−1Pu‖2.

Thus a trivial induction gives

‖(PÂ)sPu‖2 ≤ (β + α)s‖u‖2.

Now

‖(PÂ)sPu‖1 ≤
√
n‖(PÂ)sPu‖2

≤
√
n(β + α)s‖u‖2

= (β + α)s.

�

Thus a random walk on an expander resembles random sampling. This does not mean,
however, that one can use a expander to sample a single random element of a set using fewer
random bits. Recall from 1.33 that expanders have logarithmic diameter, which is optimal,
so it still takes logarithmically many random bits to determine a single random vertex from
the whole graph. However, when we repeatedly draw random elements they appear to be
sampled both independently and uniformly at random, where the illusion is sufficient for
many purposes.

Many important algorithms depend essentially on randomness (at least to the extent
that there are no known deterministic algorithms that have comparable performance).
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Example 2.21. The Miller–Rabin primality test [Rab80] was the first efficient algorithm to
test the primality of positive integers. We let L = {2, 3, 5, 7, 11, . . . } denote the language of
prime numbers. The algorithm tests, for a given positive integer x, whether x ∈ L.

The algorithm relies on a number-theoretic result that follows from Fermat’s little theo-
rem. Let p be a prime, d be the largest odd factor of p− 1, and let 2k be the greatest power
of 2 dividing p − 1, so that p − 1 = 2kd. By Fermat’s little theorem, a2

kd ≡ 1 (mod p).
Since a2 − 1 = (a − 1)(a + 1), modulo a prime p the only square roots of 1 are ±1. Thus

we compute a2
k−1d (mod p), which is a square root of 1 and hence either 1 or −1. If it is 1,

then we can compute a2
k−1d, which should again be a square root of 1.

We can continue repeating this until either we have a2
ld ≡ −1 (mod p) for some l ≤ k,

or we finish at ad ≡ 1 (mod p). However, this will only necessariy happen if p is a prime. If
this does not happen for some a ∈ {1, 2, . . . , p− 1}, we call a a witness to the compositeness
of p. The algorithm picks such an a at random, and tests for this property by computing
those powers of a (which is computationally efficient).

The effectiveness of the algorithm follows from the theorem of Rabin from his paper
where he randomized the ideas of Miller. If p is not a prime, then at least 1/4 of the possible
a’s are witnesses to the compositeness of p. Thus, if we can sample such an a at random,
the algorithm will correctly identify that p is composite with high probability. Otherwise, it
will report that p might be prime.

It was only in 2002 that Agrawal–Kayal–Saxena gave a deterministic polynomial-time
algorithm to test primality [AKS04]. It is still much slower in practice than the Miller–
Rabin test.

What is not clear from the example is that sampling random elements is non-trivial. To
quote [HLW06, p.446]:

The importance of minimizing the number of random bits may not be evident,
but we can assure the reader that it is a basic theoretical problem and, more-
over, that getting your hands on good random bits is a nontrivial practical
problem.

Definition 2.22. Let the set L be a language, and suppose that there exists a randomized
algorithm A to determine membership of L with the following properties. To determine
whether an input x belongs to L, A samples a random k-bit string r and computes in
polynomial time a boolean function A(x, r). Furthermore, if x ∈ L then A(x, r) = 1 for all
r ∈ {0, 1}k, and that A(x, r) = 0 when x /∈ L for all but β2k inputs r with β < 1. Then the
language L is in RP.

Algorithm 2.23. Let A be a randomized algorithm for L as described in the above defini-
tion. To determine membership of L ∈ RP, sample uniformly at random r0 ∈ {0, 1}k. Take
a (2k, d, α) expander graph on vertex set {0, 1}k, and form a random walk of length s. Then
return true if A(x, ri) = 1 for i = 0, 1, . . . , s and false otherwise.

Proposition 2.24. The algorithm fails on x /∈ L with probability at most (α + β)s, and
always succeeds on x ∈ L.

Proof. For x /∈ L, the algorithm will fail precisely if each random input ri ∈ B, the set of
bad inputs, where |B| = β2k. The result thus follows from Theorem 2.16. It is clear that if
x ∈ L then the algorithm will always correctly return true. �
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Remark 2.25. One can get a similar result for algorithms that can err on both sides, that
is, algorithms that might incorrectly determine x /∈ L when in fact x ∈ L. One does this by
taking a random walk on the expander, and taking the majority answer of A(x, ri). Bounding
the probability of error is however much more difficult in this case.

Remark 2.26. The algorithm achieves a probability of error that decays exponentially in s
using only k random bits to sample r0 and s log d random bits to sample r1, . . . , rs. That is,
the number of random bits needed is k +O(s).

Remark 2.27. In many ways this application of expanders justifies the definition of an
expander family. The uniform bound on the spectral gap for a family whose size grows to
infinity is necessary to be able to derandomize an algorithm for all possible input sizes. More
particularly, the degree of a graph determines how many random bits we need to sample for
each time step of the random walk. We need this to be constant in order to achieve an
decay of the probability of error that is exponential in the number of additional random bits
required.

Remark 2.28. An issue overlooked in [HLW06] is that in order to have an exponentially
decaying bound on the probability error, we require α + β < 1. If one has a very good
spectral expander, such as a Ramanujan graph (Remark 2.14), then α ∈ (0, 1) will not be
very close to 1. With expanders of spectral expansion α much closer to 1, we can artificially
decrease β by considering all pairs of random inputs (r, r′) ∈ {0, 1}2k, or even triples etc.,
which will effectively replace β with β2 or β3 respectively. This comes at a cost of requiring
more randomness, but still gives exponential decay.
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Chapter 3

Kazhdan’s Property (T)

Property (T) was introduced by Kazhdan in his seminal and remarkably short paper
[Kaz67]. It was used to demonstrate that a large class of lattices in semisimple Lie groups
are finitely generated. We present this result in Corollary 3.90.

Property (T) is defined in terms of unitary representations, so we recall the necessary
background on Hilbert spaces, group representations and topological groups in Section 3.1.
After this we give a definition of Property (T) in Section 3.2 in terms of invariant vec-
tors, along with first results and some easy non-examples that are afforded by the theory
of amenability. Section 3.3 is dedicated to an original proof that compact groups have
Property (T). Kazhdan sets can be used to phrase one of many alternative definitions of
Property (T), and in Section 3.4 we study these sets and their relation to generation in
Kazhdan groups. We then turn to the theory of lattices, which historically are closely tied
with Property (T), in Section 3.5. Section 3.6 gives examples, with proof, of non-compact
Lie groups which have Property (T), which will be used to construct expanders in Chapter 4.

3.1. Unitary Representations of Locally Compact Groups

This section recalls the background needed to define a unitary representation of a locally
compact groups: Hilbert spaces, group representations and topological groups. We give
examples which we will need later in this chapter.

Our presentation of Hilbert spaces will follow the standard text by Conway [Con90].

Definition 3.1 (Inner product). Let H be a vector space over C. An inner product on H
is a function 〈·, ·〉 : H×H → C such that for all α, β ∈ C and x, y, z ∈ H, the following are
satisfied:

a) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉;
b) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉;
c) 〈x, x〉 ≥ 0 with equality if and only if x = 0; and

d) 〈x, y〉 = 〈y, x〉.
A vector space H over C together with an inner product on H will be called an inner product
space. Usually the particular inner product will be implicit, and we refer to H by itself as
an inner product space.

Example 3.2. The space Cn has the inner product

〈(z1, . . . , zn), (w1, . . . , wn)〉 = z1w1 + · · ·+ znwn.

An inner product endows a vector space with a norm. We present this result without
proof (see [Con90, Corollary 1.5]).
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Corollary 3.3 (Norm). Let 〈·, ·〉 be an inner product on a vector space H and define

‖x‖ =
√
〈x, x〉 for all x in H. Then ‖·‖ is a norm for H, that is:

a) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y in H;
b) ‖αx‖ = |α| ‖x‖ for all α in C and x ∈ H; and
c) ‖x‖ ≥ 0 with equality if and only if x = 0.

A normed vector space V has a natural metric structure, given by defining d(x, y) =
‖x− y‖ for all x, y in V . The metric space structure then gives a topology on V . We are
now able to define the class of inner product spaces with which we will work from now on.

Definition 3.4 (Hilbert space). Let H be an inner product space with norm ‖·‖ given by
its inner product. Then H is called a Hilbert space if it is complete with respect to the norm
topology on H.

Remark 3.5. One can also study inner product spaces over R, but for purposes of developing
theory around Property (T) will consider only Hilbert spaces over C. From now on, we adopt
the following convention:

H is a Hilbert space over C.

Example 3.6 (Finite-dimensional Hilbert spaces). The space Cn with the inner product
defined in Example 3.2 is a finite-dimensional Hilbert space. Moreover, any n-dimensional
Hilbert space can be identified with Cn (that is, they are isometrically isomorphic, which is
the natural equivalence for Hilbert spaces).

Example 3.7 (L2 spaces). Let (X,A, µ) be a measure space, where the measure µ is defined
on the σ-algebra A of subsets of X. Let

L2 =

{
f : X → C

∣∣∣∣ ∫
X

|f(x)|2dµ(x) <∞
}

be the vector space of square-integrable complex functions on X. If we quotient out by the
equivalence relation

f ∼ g ⇔
∫
X

|f(x)− g(x)|2dµ(x) = 0

then we get the Hilbert space L2(X). The inner product is

〈f, g〉 =

∫
X

f(x)g(x)dµ(x).

Remark 3.8. When dealing with L2(X), we will consistently abuse notation and refer to
its elements as functions f , rather than equivalence classes of functions [f ]. However, we
will not make any statements about such a function f that are not true when we perturb f
on a set of measure 0.

Example 3.9 (Direct sum of Hilbert spaces). For a family {Hi | i ∈ I} of Hilbert spaces,
we can define the direct sum

⊕i∈IHi

to be the complex vector space of (xi)i∈I such that∑
i∈I

‖xi‖2 <∞.
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When given the inner product

〈(xi), (yi)〉 =
∑
i∈I

〈xi, yi〉

this is a Hilbert space.

Many properties follow immediately from the definition of an inner product space. We
prove here a few that we will need later.

Lemma 3.10 (Parallelogram rule). For x, y ∈ H we have

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 .

Proof. From the definition of the norm and linearity of the inner product we have

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + ‖y‖2 + 〈x, y〉+ 〈y, x〉

and

‖x− y‖2 = 〈x− y, x− y〉
= 〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉
= ‖x‖2 + ‖y‖2 − 〈x, y〉 − 〈y, x〉.

Summing these gives the desired equality. �

Lemma 3.11 (Apollonius). Let a, b, p ∈ H and let m = 1
2
(a+ b). Then

‖p−m‖2 +
1

4
‖a− b‖2 =

1

2
‖p− a‖2 +

1

2
‖p− b‖2 .

Proof. Let x = p− a, y = p− b in the Parallelogram Rule (Lemma 3.10). Then

‖2p− a− b‖2 + ‖b− a‖2 = 2 ‖p− a‖2 + 2 ‖p− b‖2 .
As ‖2p− a− b‖2 = ‖2(p−m)‖2 = 4 ‖p−m‖2, the result follows. �

We quote without proof a well-known and useful proposition [Con90, Proposition 1.4].

Proposition 3.12 (Cauchy–Schwarz Inequality). Let 〈·, ·〉 be an inner product on a vector
space H. Then

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉
for all x and y in H. Moreover, equality occurs if and only if there are scalars α, β ∈ C, not
both zero, such that αx = βy.

Definition 3.13 (Topological group). A topological group G is a group together with a
Hausdorff topology on G such that the maps

G×G→ G : (g, h) 7→ gh and G→ G : g 7→ g−1

are continuous.
A locally compact topological group is a topological group such that the topology is locally

compact, that is, each point has a compact neighbourhood.
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Remark 3.14. The continuity conditions in Definition 3.13 can be thought of as the re-
quirement that the algebraic and topological structures on G be compatible. Nonetheless,
we note that local compactness is a defined as a purely topological property that has no direct
relation to the group structure (although the continuity requirement enforces an indirect re-
lation, so for instance it suffices that any element of the group has a compact neighbourhood
since G acts on itself transitively by homeomorphisms).

Remark 3.15. Not all authors require a topological group G to be Hausdorff. However,
since the axioms imply that translation and inversion are homeomorphisms of G, it is a simple
exercise to show that if G satisfies the T0 separation axiom then it is actually T2 (Hausdorff):
if U is an open neighbourhood of x but not y, then yU−1x is an open neighbourhood of y
but not x. (In fact, the topology will be T3 1

2
, that is, completely regular Hausdorff.) Stated

differently, if a topological group is not Hausdorff, then the elements of G are not topolog-
ically distinguishable in general, so it is a coarse topology. So the convenient requirement
that the topology be Hausdorff is rather mild.

Examples 3.16. The following are several familiar topological groups. They are all locally
compact.

a) Any group is a topological group when endowed with the discrete topology. (Any
finite topological group is generally assumed to have the discrete topology.)

b) The additive groups Z, Q, R and C are topological groups under the usual topology
(given by the Euclidean metric).

c) The general linear group

GL(n,R) = {T : Rn → Rn | T is invertible}
is a topological group. The topology is defined by identifying GL(n,R) with a subset

of Rn2
, as each operator T can be identified with an n × n matrix. (The Euclidean

metric topology on Rn2
is then used.) The special linear group SL(2,R) is a also a

topological group, since it is a subgroup of GL(2,R).

Definition 3.17. A group representation of a group G on a vector space V is a group
homomorphism

π : G→ GL(V )

of G into the general linear group on V , that is, the group of invertible linear operators on
V . A representation π is irreducible if V has no non-trivial subspace W that is invariant
under the action of G, that is, no subspace {0} 6= W ( V such that

π(g)w ∈ W
for all g ∈ G and w ∈ W .

We will mostly be interested in unitary representations. These are defined on Hilbert
spaces and are required to preserve the geometric structure, that is, each π(g) must be a
surjective isometry. Furthermore, we demand a continuity condition.

Definition 3.18 (Isometry). A linear map T : H → H′ between inner product spaces is an
isometry if it preserves the inner product, that is,

〈Tu, Tv〉 = 〈u, v〉
for all u, v ∈ H.
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Definition 3.19 (Unitary group). Let H be a Hilbert space over C. The unitary group on
H, denoted U(H), is the set of all (linear) surjective isometries T : H → H.

Lemma 3.20. The unitary group U(H) under composition of maps is indeed a group.

Proof. It is clear that the identity on H is a surjective isometry. If S, T ∈ U(H), then ST
is surjective and

〈STu, STv〉 = 〈S(Tu), S(Tv)〉 = 〈Tu, Tv〉 = 〈u, v〉
for all u, v ∈ H, so that ST ∈ U(H). Finally, each T ∈ U(H) is an isometry, so ‖Tv‖ = ‖v‖
for all v ∈ H and thus T is injective. So T : H → H is a linear bijection, and has an inverse
T−1. Its inverse is an isometry since

〈T−1u, T−1v〉 = 〈TT−1u, TT−1v〉 = 〈u, v〉
for all u, v ∈ H. �

We are now able to define unitary representations [BdlHV08, Definition A.1.1].

Definition 3.21 (Unitary representation). A unitary representation of a topological group
G on a Hilbert spaceH is a group homomorphism π : G→ U(H) which is strongly continuous
in the sense that the mapping

G→ H : g 7→ π(g)ξ

is continuous for every vector ξ in H.

Remark 3.22. Since any unitary operator is a bounded linear function, the map

H → H : ξ 7→ π(g)ξ

is continuous for each g ∈ G. We can actually say more: the evaluation map G×H → H is
jointly continuous.

Lemma 3.23. Let π : G → U(H) be a strongly continuous unitary representation. Then
the map

G×H → H : (g, ξ) 7→ π(g)ξ.

is continuous.

Proof. Let g0 ∈ G, ξ0 ∈ H and ε > 0. Since each π(g) ∈ U(H) is an isometry, if ‖ξ − ξ0‖ <
ε/2 then ‖π(g)ξ − π(g)ξ0‖ < ε/2. By the continuity of g 7→ π(g)ξ0, there is an open
neighbourhood U 3 g0 such that for all g ∈ U we have

‖π(g)ξ0 − π(g0)ξ0‖ < ε/2.

By the triangle inequality for the norm on H, we then have that if (g, ξ) ∈ U × B(ξ0, ε/2)
then ‖π(g)ξ − π(g0)ξ0‖ < ε. Thus the map G×H → H : (g, ξ) 7→ π(g)ξ is continuous. �

From now on we will assume that all unitary representations are strongly
continuous.

Remark 3.24. A way of viewing the strong continuity required in Definition 3.21, which is is
perhaps more sophisticated, would be to give the group U(H) the strong operator topology,
and then require that representation π : G → U(H) be a homomorphism of topological
groups (that is, a continuous group homomorphism). However, for the sake of simplicity, we
will not pursue this perspective further.
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It is natural to ask whether a group has any non-trivial unitary representations. In a
fashion similar to how Cayley’s Theorem shows that every group G embeds in the symmetric
group Sym(G), we can make the group G act on a vector space that is indexed by G. As we
need a Hilbert space for a unitary representation, we take L2(G) to be that vector space.

Definition 3.25 (Left-regular representation). Let G be a locally compact group. The left-
regular representation of G, denoted λG, is defined as follows. For each g ∈ G we define
λG(g) : L2(G)→ L2(G) by

(λG(g)f)(x) = f(g−1x)

for all x ∈ G.

Proposition 3.26. Let G be a locally compact group. Then λG, the left-regular represen-
tation of G, is a unitary representation of G.

Proof. We use the notation g · f for λG(g)f . Let f ∈ L2(G) and g1, g2 ∈ G. For each x ∈ G
we have

((g1g2) · f)(x) = f((g1g2)
−1x)

= f(g−12 (g−11 x))

= (g2 · f)(g−11 x)

= (g1 · (g2 · f))(x)

so that (g1g2) · f = g1 · (g2 · f). As the identity of g acts as the identity on L2(G), λG is a
group homomorphism.

If f1, f2 ∈ L2(G), g ∈ G and c ∈ C then

(g · (f1 + f2))(x) = (f1 + f2)(g
−1x)

= f1(g
−1x) + f2(g

−1x)

= (g · f1)(x) + (g · f2)(x)

= (g · f1 + g · f2)(x)

and similarly g · (cf) = c(g · f), so each λG(g) is linear. Thus λG is a group representation,
and so we immediately have that each λG(g) is surjective as it has an inverse λG(g−1).

Now, to see that each λG is an isometry, by the left-invariance of the Haar measure we
have

〈g · f1, g · f2〉 =

∫
G

f1(g
−1x)f2(g−1x)dµ(x)

=

∫
G

f1(g
−1gy)f2(g−1gy)dµ(gy)

=

∫
G

f1(y)f2(y)dµ(y)

= 〈f1, f2〉.
Showing the continuity of this representation is a technical result that is left to the

reader. It requires the approximation (in the L2 sense) of function by continuous functions
with compact support. �
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Definition 3.27 (Right-regular representation). Let G be a locally compact group. The
right-regular representation of G is defined for each f ∈ L2(G) by

(ρG(g)f)(x) = f(xg)

for all x ∈ G.

We omit the proof that ρG is a unitary representation, as it is almost identical to the
proof for λG.

Example 3.28 (Direct sum of representations). If πi : G → U(Hi) are unitary represen-
tations, then we can form the direct sum of these representations on the direct sum of the
Hilbert spaces Hi by defining

π(g)((xi)i∈I) =
⊕
i∈I

πi(g)(xi).

It follows immediately from the definition of the Hilbert space⊕i∈IHi that this is also unitary,
and continuity follows similarly.

3.2. Property (T)

We now have the necessary background to define Property (T). The definition is rather
involved and technical, so we first give some definitions regarding invariant and almost
invariant vectors.

Definition 3.29 (Invariant vectors). Let π : G→ U(H) be a (strongly continuous) unitary
representation of a locally compact group G. For a given ε > 0 and K ⊆ G compact, we say
that a unit vector ξ ∈ H is (ε,K)-invariant if

(3.30) sup{‖π(g)ξ − ξ‖ : g ∈ K} < ε.

We say that π has almost invariant vectors if, for all (ε,K), there exists an (ε,K)-invariant
unit vector. Finally, we say that π has non-zero invariant vectors if there exists η ∈ H with
η 6= 0 such that π(g)η = η for all g ∈ G.

Remark 3.31. We restrict to unit vectors in the definition of invariant vectors because
otherwise by scaling down any given ξ to have sufficiently small norm we could always
satisfy Equation (3.30). Alternatively, we could require that

sup{‖π(g)ξ − ξ‖ : g ∈ K} < ε ‖ξ‖
with no restriction on ξ ∈ H. We could then normalize such a ξ if desired (indeed, the strict
inequality means that ξ 6= 0).

We illustrate the definition of invariant vectors with the following lemmas which we will
need later.

Lemma 3.32. If ξ ∈ H is (ε,K)-invariant, then it is (ε,K ∪K−1)-invariant.

Proof. For each g ∈ K, since π(g−1) is an isometry we have

‖π(g)ξ − ξ‖ =
∥∥π(g−1)(π(g)ξ − ξ)

∥∥ =
∥∥π(g−1)ξ − ξ

∥∥ .
�
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Lemma 3.33. Suppose that ξ ∈ H is (ε,K)-invariant. Let n ∈ N, and

Kn = {k1 · · · kn | k1, . . . , kn ∈ K}.
Then ξ is (nε,Kn)-invariant.

Proof. Let
δ = sup{‖π(g)ξ − ξ‖ : g ∈ K} < ε.

For k = k1 · · · kn ∈ Kn we have by the triangle inequality that

‖π(k)ξ − ξ‖ ≤ ‖π(k1 · · · kn)ξ − π(k1 · · · kn−1)ξ‖+ ‖π(k1 · · · kn−1)ξ − ξ‖
= ‖π(k1 · · · kn−1)(π(kn)ξ − ξ)‖+ ‖π(k1 · · · kn−1)ξ − ξ‖
= ‖π(kn)ξ − ξ‖+ ‖π(k1 · · · kn−1)ξ − ξ‖
≤ δ + ‖π(k1 · · · kn−1)ξ − ξ‖ .

Proceeding by induction we get ‖π(k)ξ − ξ‖ ≤ nδ, so since k ∈ Kn was arbitrary, the vector
ξ is (nε,Kn)-invariant. �

Definition 3.34 (Property (T)). A locally compact group G has Property (T), or is a
Kazhdan group, if any (strongly continuous) unitary representation of G which has almost
invariant vectors has a non-zero invariant vector.

Remark 3.35. The T in Property (T) stands for ‘trivial’. One can equip the unitary dual of
G, consisting of equivalence classes of irreducible unitary representations of G and denoted
by Ĝ, with a natural topology called the Fell topology. Property (T) then amounts to saying

that the trivial representation is an isolated point in the Fell topology on Ĝ. However, we
will not consider Ĝ and the Fell topology further, preferring instead the more ‘hands on’
invariant vectors definition.

Example 3.36. The additive group of integers Z does not have Property (T). We do not
have to look very far to find a unitary representation of Z which has almost invariant vectors
but not invariant vectors: the left-regular representation is one such representation. Let
ε > 0 and K ⊆ Z be compact. Since Z is a discrete group, K is finite. Thus K is bounded,
so there exists c ∈ Z+ such that for all g ∈ K we have |g| ≤ c. To get an (ε,K)-invariant
vector in L2(Z), we just need to find a function that is sufficiently ‘wide’. Let d > c be a
positive integer, and define

f(x) =

{
1/(2d+ 1)1/2 if |x| ≤ d

0 otherwise.

where the factor of (2d+1)1/2 is chosen to make f a unit vector. Let g ∈ Z with |g| ≤ c, and
suppose without loss of generality that g ≥ 0 (since ‖g · f − f‖ = ‖f − g−1 · f‖ in general).
Then

(g · f − f)(x) =


1/(2d+ 1)1/2 if d < x ≤ d+ g

−1/(2d+ 1)1/2 if − d ≤ x < −d+ g

0 otherwise.

so that

‖g · f − f‖2 =
2g

2d+ 1
≤ 2c

2d+ 1
.
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So for sufficiently large d, the vector f will be (ε,K)-invariant.
However, the left-regular representation λZ does not have non-zero invariant vectors. If

‖g · f − f‖ = 0

then ∑
x∈Z

|f(x− g)− f(x)|2 = 0

so that f(x− g) = f(x) for all x. If this holds even just for g = 1, then f must be constant
(when applying a similar argument to a different group such as R, we would need the fact
that an invariant vector f has ‖g · f − f‖ = 0 for all g). Since Z does not have finite
measure, this implies that the square-summable f must in fact be zero.

With the Heine–Borel Theorem and a little extra care surrounding the Lebesgue measure,
we can extend the same argument to see that R does not have Property (T). One could
similarly work with Zd or Rd.

Remark 3.37. Property (T) and amenability can be considered to be opposites. We will
not develop any of the theory of amenability in this essay; the curious reader is referred to
Appendix G of [BdlHV08]. Briefly, a group is amenable if it has a left-invariant mean, that is,
a non-negative linear functional Λ of norm 1 defined on the essentially-bounded measurable
functions on G such that Λ(g · f) = Λ(f) for all g ∈ G, f ∈ L∞(G).

We assume Propositions 3.38 and 3.39 below without proof, as they will allow us to de-
velop rapidly some interesting background theory for Property (T). (Note however that these
results and the subsequent results that use them will not be required for the constructions
of expanders given in Chapter 4.)

Proposition 3.38 ([BdlHV08, Theorem G.2.1]). Every abelian group is amenable.

Proposition 3.39 ([Lub94, Corollary 3.1.6]). Every amenable locally compact group with
Property (T) is compact.

Remark 3.40. As compact groups are amongst the easy first examples for both amenability
and Property (T) (see [BdlHV08, Example G.1.5] and Proposition 3.52 below respectively),
we might say that any group which is both amenable and Kazhdan is trivially so.

Remark 3.41. The reason that Proposition 3.39 appears in [Lub94] as a Corollary is that
one of many equivalent definitions of amenability is that the left-regular representation of
that group has almost invariant vectors. If the group also has Property (T), then the left-
regular representation has a non-zero invariant vector. Similarly to in Example 3.36, the
Haar measure of the whole group must be finite. This implies that the group is compact.

Remark 3.42. Local compactness is required for Proposition 3.39, as for instance the uni-
tary group U(H) on an infinite-dimensional separable Hilbert space H is amenable and has
Property (T) (as was shown by Bekka in [Bek03]), but U(H) is not compact. Indeed, if a
group is not even locally compact then it cannot possibly be compact.

We now use the ‘black box’ Propositions 3.38 and 3.39 to develop several results, each
of which is demonstrated by an example of a group which consequently does not have Prop-
erty (T).
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Corollary 3.43. Let G be an infinite discrete abelian group. Then G does not have Prop-
erty (T).

Proof. By Proposition 3.38, G is amenable. If G were moreover Kazhdan, then it would
be compact by Proposition 3.39. However, a discrete group is compact if and only if it is
finite. �

Example 3.44. The free abelian group Zd does not have Property (T).

Proposition 3.45. Let G1 and G2 be topological groups and φ : G1 → G2 a continuous
homomorphism with dense image. If G1 has Property (T), then so does G2.

Proof. Let π : G2 → U(H) be a unitary representation of G2 that has almost invariant
vectors. We can pull back π to a unitary representation of G1, letting

ψ = π ◦ φ : G1 → U(H).

As both π and φ are group homomorphisms, so is ψ. For each ξ ∈ H, the map g 7→ ψ(g)ξ
is the composition of the continuous maps g1 7→ φ(g1) and g2 7→ π(g2)ξ, hence continuous.
Thus ψ is indeed a unitary representation of G1.

For any ε > 0 and K ⊆ G1 compact, the image φ(K) ⊆ G2 is compact. As π has almost
invariant vectors, there exists a unit vector ξ ∈ H such that

sup{‖π(g2)ξ − ξ‖ : g2 ∈ φ(K)} < ε

and thus
sup{‖ψ(g1)ξ − ξ‖ : g1 ∈ K} < ε.

Thus ψ has almost invariant vectors, so since G1 is Kazhdan there is a non-zero η ∈ H such
that ψ(g1)η = η for all g1 ∈ G1. So π(g2)η = η for all g2 ∈ φ(G1). Since φ(G1) is dense
in G2 by assumption and g2 7→ π(g2)η is continuous, π(g2)η = η for all g2 ∈ G2. Thus
π has an almost invariant vector. The unitary representation π was arbitrary, so G2 has
Property (T). �

Corollary 3.46. Let G be a Kazhdan group with closed normal subgroup N . Then G/N
has Property (T).

Proof of Corollary 3.46. Since the quotient map is a continuous surjection, this follows
immediately from Proposition 3.45. �

Remark 3.47. The requirement that N be closed is to ensure that the quotient space is
Hausdorff.

Example 3.48. Any non-abelian free group Fd on d ≥ 2 generators does not have Prop-
erty (T). If Fd were a Kazhdan group, then the abelianisation Fd/[Fd, Fd] ∼= Zd would have
Property (T) also. We saw in Example 3.44 that this is not the case.

Corollary 3.49. Let G1 and G2 be locally compact topological groups, and suppose that G1

has Property (T) and G2 is amenable. If φ : G1 → G2 is a continuous group homomorphism,
then φ(G1) is relatively compact.

Proof. We have φ(G1) < G2, and so the continuity of the group operations gives that

φ(G1) < G2. By Proposition 3.45, since φ(G1) is dense in φ(G1), the latter has Property (T).
Now [BdlHV08, Corollary G.3.4] says that closed subgroups of amenable locally compact
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groups are amenable. Moreover, since φ(G1) is a closed subgroup of a locally compact
group, it is itself locally compact (this holds more generally for topological spaces [Mun00,

Corollary 29.3]). Thus φ(G1) is an amenable locally compact group with Property (T), hence
compact by Proposition 3.39. �

Example 3.50. The general linear group GL(n,R) does not have property (T). This is
because det : GL(n,R)→ R∗ is a surjective map onto a non-compact abelian group.

Remark 3.51. We noted in Remark 3.42 that we can only conclude that an amenable
group with Property (T) is compact if that group is locally compact. This is why we need
to take the closure of φ(G1) in Corollary 3.49: a subgroup of a locally compact group is not
necessarily locally compact, even if it is the continuous image of a locally compact group
(similarly, closure is needed for subgroups to inherit amenability). For example, the image
of φ : Z → T : n 7→ ein is not locally compact. One way to see this is to note that it is the
countable union of closed sets but has empty interior, contradicting Theorem 3.70, the Baire
Category Theorem.

3.3. Compact Groups Have Property (T)

This section is dedicated to the proof of the following proposition.

Proposition 3.52. All compact groups have Property (T).

The proof we present in this section differs from standard proofs, such as in [dlHV89],
[Lub94] and [BdlHV08], in ways and for reasons we now explain. Those three texts have
proofs that use an orbit of an almost invariant vector to construct one particular vector, in
such a way that since the action preserves the orbit it fixes that vector.

Let π : G → U(H) be a unitary representation of a compact group G, and let ε > 0.
Suppose that ξ ∈ H is an (ε,G)-invariant vector. The texts [dlHV89] and [Lub94] both prove
Proposition 3.52 with a similar method to the proof that compact groups are amenable:
they use the fact that a compact group has finite Haar measure in an essential way (refer to
Definition 3.76 of Haar measure). One can use the measure to ‘average’ the translates π(g)ξ
over G in order to obtain an invariant vector (by the invariance of the Haar measure), that
is, one takes

η =

∫
G

π(g)ξdg.

We only require a very mild choice of ε to ensure that η 6= 0. Let ε =
√

2. Then

sup{‖π(g)ξ − ξ‖ : g ∈ G} =
√

2− 2δ

for some δ > 0. Now each 〈π(g)ξ, ξ〉 ≥ δ > 0 so that 〈η, ξ〉 > 0, and thus η 6= 0. (This
demonstrates why it is convenient to have strict inequality in Equation (3.30).)

The more recent [BdlHV08] has a rather geometric approach, which considers the closure
C of the convex hull of the orbit π(G)ξ. One then shows that the vector η0 ∈ C of minimal
norm is a non-zero invariant vector, since the action of G on the Hilbert space leaves the
convex hull invariant and preserves the norm. This requires the non-trivial theorem that the
convex hull of a compact set in a Hilbert space is relatively compact.

We instead take an iterative approach with a constructive flavour that better gives a
sense for how a compact group acts on a space, and how to find almost invariant vectors
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that are close to each other. Another advantage is that we avoid the use of some perhaps
unnecessarily powerful tools, namely the Haar measure of a compact group and a theorem
about convex hulls in (possibly infinite-dimensional) Hilbert spaces.

The idea of the proof we present is to take an almost invariant vector as the starting point,
and iteratively construct a convergent sequence of (ε,G)-invariant unit vectors for ε → 0.
This idea is similar to the Bruhat–Tits Fixed-point Theorem [dlHV89, Proposition 3.9], but
we consider a different orbit at each point in the sequence. For any unitary representation
with almost invariant vectors it is possible to construct a sequence, except that it will not in
general be convergent: in an infinite-dimensional Hilbert space the unit ball is not compact,
so an arbitrary sequence of unit vectors will not contain a convergent subsequence.

We now prove the following key lemma, which enables us to find for an almost invariant
vector v another almost invariant vector m̂ so that m̂ is a better approximation of being
invariant, with m̂ close to v.

Lemma 3.53. Let c = 1√
2

and r =
√

6
7
. Let v be an (ε,G)-invariant vector, with ε ≤ c.

Then there exists a (rε,G)-invariant unit vector m̂ such that ‖v − m̂‖ < ε.

Proof. Let δ = sup{‖π(g)v − v‖ : g ∈ G} < ε. By the strong continuity of the unitary
representation, the continuous map

G→ R : g 7→ ‖π(g)v − v‖
must attain its maximum on compact G, so let g0 ∈ G be such that v′ = π(g0)v and
‖v′ − v‖ = δ.

Let m = (v + v′)/2. Our hope is that m will be more “central” and thus closer to the
entire orbit π(G)v than v is. The geometry behind this result is illustrated by the vesica
piscis in Figure 3.1. The two black dots correspond to v and v′. The entire orbit lies within
δ of each of v and v′, and hence must be contained in the shaded region, all of which lies at
a distance significantly smaller than δ to m.

By Lemma 3.11, for each p ∈ π(G)v we have

‖p−m‖2 =
1

2
‖p− v‖2 +

1

2
‖p− v′‖2 − 1

4
‖v − v′‖2

≤ 1

2
δ2 +

1

2
δ2 − 1

4
δ2

=
3

4
δ2.(3.54)

Now there are two outstanding issues with m: its orbit is different from the orbit π(G)v,
and it is not a unit vector.

For the first issue, all the points on the orbit π(G)m have the form

π(g)m =
π(g)v + π(g)v′

2

and in particular are the midpoints of vectors a, b on the orbit π(G)v. Now by Lemma 3.11
we see that m will be at least as close to the midpoint of a and b as it is to more distant of
a and b:

(3.55) ‖m− π(g)m‖2 ≤ 1

2
‖m− a‖2 +

1

2
‖m− b‖2 ≤ 3

4
δ2
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by (3.54).
For the second issue, as we assumed ε ≤ 1/

√
2, and δ < ε, we can use Lemma 3.11 again,

this time with p = 0, to get a lower bound on the norm of m:

(3.56) ‖m‖2 =
1

2
+

1

2
− 1

4
δ2 > 1− 1

8
so that

(3.57) ‖m‖ >
√

7

2
√

2
.

Combining (3.55) and (3.57) we have for all g ∈ G that

‖π(g)m−m‖ / ‖m‖ ≤
√

3

2
· 2
√

2√
7

=

√
6√
7
.

As g ∈ G was arbitrary, after normalising m̂ = m/ ‖m‖ we have that m̂ is (rε,G)-
invariant.

It is easy to verify that ‖v − m̂‖ ≤ δ. By the triangle inequality, since ‖v −m‖ = δ
2
, it

suffices to show that ‖m− m̂‖ ≤ δ
2
. From Equation (3.56), we see that

‖m− m̂‖ = 1−

√
1−

(
δ

2

)2

.

Now √
1− δ

2
≤
√

1 +
δ

2
so that

1− δ

2
≤
√

1− δ

2
·
√

1 +
δ

2
=

√
1−

(
δ

2

)2

= 1− ‖m− m̂‖

which completes the proof. �

Remark 3.58. Compactness was not very essential to the above proof. It enters in the
following proof mainly in the fact that by definition of almost invariant vectors, we must
have an (ε,G)-invariant vector, and then in a continuity argument. Weaking the choice of r
in the above lemma, we could have instead taken v′π(G)v such that ‖v − v′‖ is very close to
the supremum δ, say, at least 99

100
δ.

Proof of Proposition 3.52. As π has almost invariant vectors, we can find a (1/
√

2, G)-
invariant unit vector v0. Repeatedly applying Lemma 3.53, we can construct a sequence
v0, v1, v2, . . . of unit vectors, such that each vn is (rn/

√
2, G)-invariant, and

‖vn+1 − vn‖ ≤ rn/
√

2.

For m ≤ n, the triangle inequality gives

‖vn − vm‖ ≤
n−1∑
i=m

ri/
√

2 <
∞∑
i=m

ri/
√

2 =
rm√

2(1− r)
→ 0

as m → ∞. Hence (vi) is a Cauchy sequence, which converges to a limit v ∈ H by the
completeness of the Hilbert space H. Since each vi is a unit vector, v is a unit vector.
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Figure 3.1. The geometry of the orbit of an almost invariant vector.

Source: Wolfram MathWorld

To finish the proof, we will use the following technical result.

Lemma 3.59. Let X and Y be topological spaces with X compact. Suppose that f :
X × Y → R is continuous. Then

g(y) = sup
x∈X

f(x, y)

defines a continuous function g : Y → R.

Proof. This is proved in Appendix B. �

Since the evaluation map G×H → H is continuous (Lemma 3.23), the map

G×H → R : (g, ξ) 7→ ‖π(g)ξ − ξ‖

is continuous. Thus

d : H → R : ξ 7→ sup
g∈G
‖π(g)ξ − ξ‖

is continuous, by Lemma 3.59.
As d is continuous and limn→∞ d(vn) = 0, we have

d(v) = 0

so v is a non-zero invariant vector as required. �

Remark 3.60. A useful mental model for the preceding proof is as follows. Take G = Z/3Z
acting on R3 by rotations of multiples of 2π/3 around the z-axis. Let ξ0 = (3

5
, 0, 4

5
) be an

almost invariant vector. Pick either of the 2 other points on its G-orbit to be ξ′0. Then the
‘projection’ ξ1 of the midpoint (ξ0 + ξ′0)/2 back onto the sphere will be closer to the north
pole than ξ0 is. Continuing this process, we construct a sequence of vectors which converges
to the north pole, which is an invariant vector.
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Remark 3.61. The fact that a compact group G is necessarily Kazhdan highlights the
importance of the topological structures, namely, the topology of the group G and the
strong continuity of the representation π : G → U(H). Any group can be made a compact
group, hence a Kazhdan group, by endowing it with the trivial topology (although this does
violate our requirement from Definition 3.13 that the topology be Hausdorff). However, one
would very rarely have cause to consider a group with such a topology. Rather than going by
Proposition 3.52, Property (T) comes immediately as the strong continuity in fact requires
that any unitary representation of a group with the trivial topology be trivial.

3.4. Kazhdan Sets and Generation

In this section we introduce Kazhdan sets and Kazhdan pairs. These allow us to give in
Corollary 3.68 an equivalent definition of Property (T) that is quantitative in a way that is
independent of any particular unitary representation. This will be essential to the Margulis
construction in Chapter 4. Property (T) and Kazhdan sets are related to generating sets, as
we will see in Proposition 3.67.

Definition 3.62 (Kazhdan Sets, [BdlHV08, Definition 1.1.3]). Let G be a topological group.
A subset K of G is a Kazhdan set if there exists ε > 0 with the following property: every
unitary representation π : G → U(H) which has an (ε,K)-invariant vector also has a non-
zero invariant vector. In this case, ε > 0 is called a Kazhdan constant for G and K, and
(ε,K) is called a Kazhdan pair for G.

Remark 3.63. We note a few immediate consequences of the above definition. Suppose
that ε′ < ε and K ′ ⊃ K. Any (ε′, K ′)-invariant vector is clearly (ε,K)-invariant. Thus if
(ε,K) is a Kazhdan pair, then (ε′, K ′) is an Kazhdan pair. Hence a group G will have a
Kazhdan pair if and only if (ε,G) is a Kazhdan pair for some ε > 0.

The following proposition is what [BdlHV08] calls ‘the first spectacular application of
Property (T)’. We adapt their treatment.

Proposition 3.64 ([BdlHV08, Theorem 1.3.1]). Let G be locally compact group with Prop-
erty (T). Then G is compactly generated.

Proof. Let C be the set of all open and compactly generated subgroups of G. Since G
is locally compact, every element g ∈ G has a compact neighbourhood Q. Then 〈Q〉 is
a compactly generated subgroup of G, which is moreover open since we can write 〈Q〉 =
∪q∈〈Q〉q Int(Q) so that it the union of open sets. Thus

G =
⋃
H∈C

H.

For any H ∈ C, since H is open the quotient space G/H is discrete. Let `2(G/H) denote the
Hilbert space of square-summable functions on G/H (we write `2 rather than L2 since the
space is discrete). The group G acts on the quotient space G/H, and this gives rise to the
quasi-regular representation λG/H of G on `2(G/H), similar to the left-regular representation
of Definition 3.25. (This representation however will not be faithful, since for instance all
g ∈ H give the same action on G/H.) Define the Dirac delta function δH : G/H → C by

δH(gH) =

{
1 if gH = H

0 otherwise.
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Then δH is H-invariant. We let π be the direct sum (Example 3.28) of these representations:

π =
⊕
i∈I

λG/H .

This representation has almost invariant vectors. Let Q ⊆ G be compact. Since the H ∈ C
cover G, we have

Q ⊆ H1 ∪ · · · ∪Hn

for some H1, . . . , Hn ∈ C. Letting K be the subgroup generated by H1∪· · ·∪Hn, and Ki be a
compact generating set for each Hi. Then K is generated by the compact set K1∪· · ·∪Kn, so
K ∈ C. We also have Q ⊆ K. We can view δK : G/K → C as a unit vector in ⊕H∈C`2(G/H),
by considering all other coordinates to be zero. Then δK is K-invariant, so for all x ∈ Q we
have

‖π(x)δK − δK‖ = 0.

So for an arbitrary compact Q ⊆ G, and any ε > 0, we have found an (ε,Q)-invariant vector.
As G has Property (T), there must then be some non-zero invariant vector

ξ =
⊕
H∈C

ξH ∈
⊕
H∈C

`2(G/H).

So now we can let H ∈ C be some compactly generated open subset of G such that ξH 6= 0.
As ξ is π(G)-invariant, we must have that ξH is λG/H(G)-invariant. Since the action of G
on G/H is transitive, ξ must be constant. As it is non-zero, this implies that G/H is finite.
Let S = {g1, g2, . . . , gm} be a set of representatives for the cosets of G/H, and H ′ a compact
generating set for H. Then G is compactly generated by H ∪ S. �

Corollary 3.65. Let G be a discrete group with Property (T). Then G is finitely generated.

Proof. This is immediate, as a subset of a discrete group is compact if and only if it is
finite. �

Proposition 3.66. Let G be a topological group. If ε0 > 0, K0 ⊆ G is compact and (ε0, K0)
is a Kazhdan pair for G, then G has Property (T).

Proof. If a unitary representation π of G has almost invariant vectors, setting ε = ε0,
K = K0 in Definition 3.29, it must have an (ε0, K0)-invariant vector. Since (ε0, K0) is a
Kazhdan pair, it follows that π has a non-zero invariant vector. As π was arbitrary, G has
Property (T). �

Proposition 3.66 shows that if a group has a Kazhdan pair, then it has Property (T).
The converse holds.

Proposition 3.67 ([dlHV89, Proposition 1.15]). Let G be a locally compact group with
Property (T), and let K be a compact generating set for G. Then there exists ε > 0 such
that (ε,K) is a Kazhdan pair for G.

Corollary 3.68. A locally compact group has Property (T) if and only if it has a compact
Kazhdan set.

Proof of Corollary 3.68. This follows immediately from Propositions 3.64, 3.66 and 3.67.
�
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We now work towards the proof that any compact generating set is a Kazhdan set,
Proposition 3.67. An essential part of the proof is the following.

Proposition 3.69. Let G be a locally compact group with a compact subset K and a
compact generating set Q. Then there exists an integer N such that every element of K is
a word of length at most N in Q ∪Q−1.

In order to prove this proposition, we will use a few theorems in topology. We note however
that for discrete topological spaces these theorems are trivial, so that this is not a gap in our
proof that the constructions in Chapter 4 are expanders (which only requires Proposition 3.67
for discrete groups).

Theorem 3.70 (Baire Category Theorem, [Mun00, Ex. 48.3]). Any Hausdorff locally com-
pact space is a Baire space, that is, the countable union of closed sets with empty interior
has empty interior.

Theorem 3.71 (Tychonoff, [Mun00, Theorem 37.3]). Let X and Y be compact topological
spaces. Then X × Y is compact.

Lemma 3.72. Let Q be a compact subset of a Hausdorff topological space X. Then Q is
closed.

Proof. We show that Qc is open. Let x ∈ Qc be arbitrary. Since X is Hausdorff, for each
y ∈ Q we can find open sets Ay 3 x,By 3 y. Then {By | y ∈ Q} forms an open cover of
Q, and by compactness it has a finite subcover. Denote this subcover by B1, . . . , Bk, and let
A1, . . . , Ak be the corresponding disjoint open sets that contain x. Now the finite intersection
A = ∩ki=1Ai is an open set containing x, and it is disjoint from all the Bi, and hence disjoint
from Q. That is, A ⊆ Qc is an open neighbourhood of x. Since Q was arbitrary, this shows
that Qc is open. �

We now give a proof following [BdlHV08] with all details explained.

Proof of Proposition 3.69. Recall that if H1 and H2 are compact subsets of a topological
group G then

H1H2 = {h1h2 ∈ G : h1 ∈ H1, h2 ∈ H2}
is compact, since it is the image of H1×H2 under the continuous group multiplication map.

Let Q̃ = Q ∪ Q−1 ∪ {e}. Then Q̃n = {q1 · · · qn|q1, . . . , qn ∈ Q̃} defines a sequence of

compact sets. This sequence is nested, since e ∈ Q̃ implies that Q̃n−1 ⊆ Q̃n, and

G =
∞⋃
n=1

Q̃n

since Q is a generating set for G. Since G is Hausdorff by the definition of a topological

group, Lemma 3.72 implies that each Q̃n is closed. By Theorem 3.70, we know that some Q̃m

must have non-empty interior, since their countable union G clearly has non-empty interior.

Let Q̃m contain a neighbourhood U of some x ∈ G, and let U ′ = x−1U . Then U ′ ⊆ Q̃2m.

Now for any g ∈ G, as Q is a generating set we have g ∈ Q̃n for some n, and thus

gU ′ ⊆ Q̃n+2m so that Q̃n+2m is a neighbourhood of g. Thus (int(Q̃n))n∈N forms an open
cover of G, and in particular, an open cover of K. Thus there is some N ∈ N such that

K ⊆ Q̃N , that is, every element of K is the product of at most N elements of Q ∪Q−1. �
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Remark 3.73. We note that the above proof uses the structure of G as a topological group
in an essential way. The space R+

0 with the usual topology is locally compact and Hausdorff,
but not a topological group. The nested sequence Qn = {0}∪ [ 1

n
, n] exhausts the whole space

by compact sets, yet no Qn covers the compact set [0, 1], in contrast to the Q̃n of the above
proof.

We now have the all the ingredients for the proof.

Proof or Proposition 3.67. We take the approach of [dlHV89].
We argue by proof by contradiction: suppose that for all ε > 0 there is a unitary

representation of G which has an (ε,K)-invariant vector but no non-zero invariant vectors.
In particular, let πn be a sequence of such representations with ( 1

n2 , K)-invariant vectors,

denoted ξn. By Lemma 3.33, this implies that each ξn is ( 1
n
, Kn)-invariant. We now take the

direct sum of representations
π = ⊕n≥1πn.

Then π has almost invariant vectors, since any 1
n
< ε and Kn ⊇ Q for sufficiently large n, by

Proposition 3.69. So since G has Property (T) there must be some η = (ηn)n≥1 that is π(G)-
invariant. Then for some n we have non-zero ηn ∈ Hn, but ηn is in particular πn(G)-invariant,
contradicting the choice of πn as a representation with no non-zero invariant vectors. �

Corollary 3.74. Let G be a discrete Kazhdan group with a finite symmetric generating set
S. Then S is a Kazhdan set for G. �

3.5. Lattices and Property (T)

Kazhdan introduced Property (T) in order to prove that lattices in certain Lie groups
are finitely generated. The main result of this section is that if a group has Property (T)
then all its lattices do as well, which then implies that they are finitely generated. The fact
that lattices inherit Property (T) is essential to the construction of expanders in Chapter 4
using discrete Kazhdan groups; proofs that those discrete groups have Property (T) that do
not embed them as lattices in Lie groups with Property (T) have only recently been given.

Definition 3.75 (Left-invariant measure). A measure µ on a σ-algebra A of subsets of a
group G is left-invariant if for all A ∈ A and g ∈ G we have gA ∈ A and

µ(gA) = µ(A).

The following theorem is a deep result in analysis. The reader is referred to [BdlHV08,
Section A.3] for further details.

Definition 3.76 (Haar measure). A left-invariant Borel regular measure on a locally com-
pact group is called a Haar measure.

Theorem 3.77 (Haar, Weil). Every locally compact group admits a Haar measure. More-
over, the Haar measure is unique up to a positive scalar.

Definition 3.78 (Lattice). Let G be a locally compact group with Haar measure µ. A
lattice in G is a discrete subgroup Γ < G with finite covolume, that is, such that the
quotient space G/Γ admits a finite volume G-invariant measure. By abuse of notation, we
write µ(G/Γ) <∞.
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Example 3.79. The discrete subgroup Zn is a lattice in the additive group Rn. Since ZnCRn,
the quotient space is actually a group, namely Tn, the n-dimensional torus constructed by
identifying opposite faces of the n-dimensional unit cube. We can give that fundamental
domain [0, 1]n the Lebesgue measure (which is a Haar measure on Rn), and this induces
an invariant measure on the quotient space. It can be proved that all lattices in Rn are
isomorphic as groups to Zn.

Example 3.80. The subgroup Zn × {0} is not a lattice in Rn+1, although it is a discrete
subgroup. As it is a normal subgroup, the fact that is does not have finite covolume actually
follows from that fact that the quotient Tn×R is a non-compact topological group and thus
does not have finite Haar measure.

Example 3.81. For n ≥ 2, the group SL(n,Z) is a lattice in SL(n,R). We will not prove
this classical result in detail in this essay; the reader is referred to [BM00, pp.144-146] for a
proof. This is the only non-elementary result required for the construction of expanders in
Chapter 4 for which we do not give a proof.

The idea of the proof that SL(n,Z) is a lattice in SL(n,R) is as follows. It is clear that
SL(n,Z) is a discrete subgroup of SL(n,R). By the celebrated Iwasawa decomposition, every
element g of SL(n,R) can be expressed uniquely in the form g = kan where k ∈ SO(n), a
is a diagonal matrix and n is an upper-triangular matrix with 1s on the diagonal. It can
be shown that every coset in the quotient space SL(n,R)/ SL(n,Z) has a representative in
a particular Siegel set St,C ⊆ SL(n,R), for t = 2√

3
and C = 1

2
, of elements whose Iwasawa

decomposition has a particular form. In the Siegel set St,C , the diagonal entries of a are
positive and the ratio between consecutive entries is bounded by t, and in k the diagonals
entries are 1 while the off-diagonal entries have absolute value bounded by C. It can be
shown that any Siegel set has finite measure, and thus the quotient space has a left-invariant
finite measure.

We recall the definition of the (external) semidirect product.

Definition 3.82. Let N and H be groups with a homomorphism φ : H → Aut(N). The
semidirect product of N and H with respect to φ, denoted by N oφ H, is the set N × H
together with the group multiplication

(n1, h1)(n2, h2) = (n1φ(h1)(n2), h1h2).

Example 3.83. SL(2,R) acts on R2 by matrix multiplication, so we can form the semidirect
product R2 o SL(2,R). It is a general result that if Λ < N , Γ < H are lattices and a
continuous action of H on N restricts to an action of Γ on Λ, then Λ o Γ is a lattice
in N o H. So from Examples 3.79 and 3.81, we have that Z2 o SL(2,Z) is a lattice in
R2 o SL(2,R).

Remark 3.84. It is very important to note that in general G/Γ is only a quotient space
and not a quotient group, since Γ is not necessarily a normal subgroup of G. We still have
a natural action of G on the quotient space, but there is no sensible well-defined group
multiplication on the quotient. While it is the case that ZnCRn and Rn/Zn ∼= Tn, SL(n,Z)
is not normal in SL(n,R). For example,(

1
2

0
0 2

)(
1 1
0 1

)(
1
2

0
0 2

)−1
=

(
1 1

4
0 1

)
/∈ SL(2,Z).
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Remark 3.85. Kazhdan introduced Property (T) to show that certain lattices are finitely
generated. Since lattices in Rn are isomorphic to Zn, it is clear that they are finitely gener-
ated. However, for G = SL(3,R) for instance, it is not obvious that all lattices are finitely
generated.

Theorem 3.86. Let Γ be a lattice in a locally compact group G. Suppose that G has
Property (T). Then Γ has Property (T) also.

Remark 3.87. The converse of Theorem 3.86 holds also, namely, if a lattice in a group has
Property (T) then that group has Property (T). For proofs of both directions, we refer the
reader to [BdlHV08, pp.60-62].

Example 3.88. The group SL(2,R) does not have Property (T). One can use the Ping-Pong
Lemma (Klein’s criterion) to show that(

1 2
0 1

)
and

(
1 0
2 1

)
generate a subgroup F2 of SL(2,R) which is free of rank 2. (One uses the natural action of
SL(2,R) on R2, with the two subsets of R2 for the lemma as {(x, y) ∈ R2 : |x| > |y|} and
{(x, y) ∈ R2 : |x| < |y|}. See [dlH00, p.26] for further details.) Since F2 is finite index in
SL(2,Z), it follows from Example 3.81 that F2 is a lattice in SL(2,R).

Remark 3.89. The fact that Γ has finite covolume in G was used essentially in the proof
of Theorem 3.86. Note that since we can easily embed SL(2,R) in SL(3,R), by(

a b
c d

)
7→

a b 0
c d 0
0 0 1


for example, the latter also contains a discrete subgroup that is free on 2 generators. However,
this subgroup is not a lattice because it does not have finite covolume. In fact, since we will
see in Section 3.6 that SL(3,R) has Property (T), we know by Theorem 3.86 that it is
impossible to find a discrete subgroup that is free and has finite covolume.

Another example, which may be familiar from the theory of amenability, is that there is
a subgroup that is free of rank 2 in O(3). However, this subgroup is not a lattice, and is
actually not even a discrete subgroup (since O(3) is compact, its only discrete subgroups are
finite).

Corollary 3.90. Any lattice Γ in a Kazhdan group G is finitely generated.

Proof. By definition of a lattice (Definition 3.78), Γ is discrete. Since G has Property (T),
so does Γ (Theorem 3.86). Now by Corollary 3.65, Γ is finitely generated. �

Remark 3.91. Topological spaces which are not second-countable are rather uncommon,
and certainly the Lie groups that Kazhdan considered are second-countable.

3.6. Some Non-compact Kazhdan Groups

In this section we prove that SL(3,R) has Property (T). To prove this we use relative
property (T), defined below, for the pair (R2 o SL(2,R),R2); for this result we only sketch
the proof. Corollaries to these are that SL(2,Z) has Property (T) and (Z2 o SL(2,Z),Z2)
has relative property (T), both of which are used in Chapter 4 to construct expanders.
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Definition 3.92 (Relative Property (T)). Let G be a locally compact group and H a closed
subgroup of G. We say that the pair (G,H) has relative property (T) if whenever a (strongly
continuous) unitary representation of G has almost invariant vectors, then it has a non-zero
vector which is fixed by H.

Remark 3.93. A group G has Property (T) if and only if the pair (G,G) has relative
property (T). Thus relative property (T) is a generalisation of Property (T).

Remark 3.94. This property was introduced by Margulis who used it for the construction
of expanders and for the resolution of the Ruziewicz problem for n ≥ 3, but it is implicit
in Kazhdan’s original paper [Kaz67]. It is not to be confused with another variant on
Property (T) that has a relative definition: Property (τ). See Remark 4.7 for a discussion
of Property (τ).

Proposition 3.95. Let H = R2oSL(2,R), that is, the semidirect product with the standard
action of SL(2,R) on R2. Then (H,R2) has relative property (T).

Proofs of this proposition are very technical. For instance, in [Lub94], the following
are used: Mackey’s theorem, induced representations, the fact that nilpotent groups are
amenable, and Hulanicki’s characterisation of amenability. The reader is encouraged to refer
to [BdlHV08, Corollary 1.4.13] for a more recent and accessible proof. It hinges on the
following theorem, due to Shalom [Sha99].

Theorem 3.96 ([BdlHV08, Theorem 1.4.5]). Let G be a locally compact group and N an
abelian closed normal subgroup. Assume that the Dirac measure at the unit character 1N
of N is the unique mean on the Borel subsets of N̂ which is invariant under the action of G
on N̂ dual to the conjugation action. Then the pair (G,N) has relative property (T).

Proof sketch for Proposition 3.95. Let m be an SL(2,R)-invariant mean on R2, and let

Ω =

{(
x
y

)
∈ R2 \ {(0, 0)}

∣∣∣∣ |y| ≥ |x|} .
Let

gn =

(
1 3n
0 1

)
∈ SL(2,R).

Then the sets gnΩ “fan out” and are disjoint. Since m(gnΩ) = m(Ω), and m(∪ngnΩ) ≤
m(R2 \ {(0, 0)}), if follows that m(Ω) = 0. Then the mean m must the Dirac measure at
(0, 0). The result then follows by Theorem 3.96. �

We now prove a series of lemmas which allows us to work towards giving a proof that
SL(3,R) has Property (T), assuming (R2 o SL(2,R),R2) has relative property (T). Some
details will only be sketched, owing to space restrictions.

Lemma 3.97 (Mautner). Let π : G → U(H) be a unitary representation. Let x ∈ G and
suppose that there exists a sequence (yi)i in G such that limi→∞ yixy

−1
i = e, the identity of

G. If ξ ∈ H is fixed by yi for all i, then ξ is fixed by x.
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Proof. As ξ is fixed by each π(yi) we can write

‖π(x)ξ − ξ‖ =
∥∥π(x)π(y−1i )ξ − π(y−1i )ξ

∥∥
=
∥∥π(y−1i )π(x)π(y−1i )ξ − ξ

∥∥
=
∥∥π(y−1i xy−1i )ξ − ξ

∥∥ .
Recall that the strong continuity of the unitary representation π gives that the map G →
H : g 7→ π(g)ξ is continuous. Since limi→∞ yixy

−1
i = e and π(e)ξ = ξ, this implies that

lim
i→∞

∥∥π(y1i xyi)ξ − ξ
∥∥ = 0

and thus ‖π(x)ξ − ξ‖ = 0, that is, π(x)ξ = ξ. �

Lemma 3.98. Let G = SL(2,R). Let π : G→ U(H) be a unitary representation, and let

N =

{(
1 t
0 1

) ∣∣∣∣ t ∈ R
}
.

If ξ ∈ H is π(N)-invariant, then it is π(G)-invariant.

Proof. We proceed to get invariance under larger and larger classes of elements of SL(2,R).
Let

A =

{(
λ 0
0 λ−1

) ∣∣∣∣λ ∈ R
}
.

We will first show that ξ is π(A)-invariant. Define a function

φ : G→ C : x 7→ 〈π(x)ξ, ξ〉.
This function is continuous, since the representation is strongly continuous. Let

a =

(
λ 0
0 λ−1

)
∈ SL(2,R)

and define the sequence

gn =

(
0 −n
n−1 0

)
∈ SL(2,R).

Now we have (
1 nλ
0 1

)
gn

(
1 nλ−1

0 1

)
=

(
λ 0
n−1 λ−1

)
.

Then since ξ is π(N)-invariant, we have

φ(gn) = φ

((
λ 0
n−1 λ−1

))
Now since φ is continuous, taking the limit as n→∞ gives

lim
n→∞

φ(gn) = φ(a).

Thus φ(a) does not depend on a, so since we can take a to be the identity, it follows that

φ(a) = φ(e) = ‖ξ‖2 .
But φ(a) = 〈π(a)ξ, ξ〉, and so since π(a) is an isometry it follows that π(a)ξ = ξ.
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Let

N− =

{(
1 0
t 1

) ∣∣∣∣ t ∈ R
}
.

We now show that ξ is π(N−) invariant. This follows immediately from Mautner’s Lemma 3.97,
since (

n 0
0 n−1

)(
1 0
x 1

)(
n−1 0
0 n

)
=

(
1 0

xn−2 1

)
and ξ is π(A)-invariant.

Let S denote the subgroup of SL(2,R) generated by N , A and N−. We now show that

S = SL(2,R). Let g =

(
a b
c d

)
∈ SL(2,R) with d 6= 0. We can write(

1 bd−1

0 1

)(
d−1 0
0 d

)(
1 0

cd−1 1

)
=

(
d−1(1 + bc) b

c d

)
=

(
a b
c d

)
since ad− bc = 1, so g ∈ S. As(

1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
=

(
0 −1
1 0

)
if d = 0 then bc 6= 0, so (

a b
c d

)
=

(
0 −1
1 0

)(
c d
−a −b

)
∈ S

by the previous conclusion. �

Lemma 3.99. Let G = SL(3,R). Let π : G→ U(H) be a unitary representation, and let

J =


1 0 s

0 1 t
0 0 1

∣∣∣∣∣∣ s, t ∈ R

 .

If ξ ∈ H is π(J)-invariant, then it is π(G)-invariant.

Proof. Let

E1 =


a 0 b

0 1 0
c 0 d

 ∈ G
∣∣∣∣∣∣ a, b, c, d ∈ R


and

E2 =


1 0 0

0 a b
0 c d

 ∈ G
∣∣∣∣∣∣ a, b, c, d ∈ R

 .

Then E1 and E2 generate a dense subgroup of G. Also, letting Ni = Ei ∩ J for i = 1, 2, we
get subgroups

N1 =


1 0 t

0 1 0
0 0 1

 ∈ G
∣∣∣∣∣∣ t ∈ R
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and

N2 =


1 0 0

0 1 t
0 0 1

 ∈ G
∣∣∣∣∣∣ t ∈ R


which are both isomorphic to the N of Lemma 3.98. Indeed, from Lemma 3.98 we see that
since ξ is fixed by J it is fixed by Ni and hence by Ei. Since E1, E2 together generate a dense
subgroup of G and π is strongly continuous, it follows that ξ is π(G)-invariant. �

Theorem 3.100. The group SL(3,R) has Property (T).

Proof. Suppose that π : SL(3,R) → U(H) is a unitary representation which has almost
invariant vectors. Let

H =


a b r
c d s
0 0 1

 ∈ SL(3,R)

 ∼= J o SL(2,R) ∼= R2 o SL(2,R)

If we restrict π to H it still will have almost invariant vectors. So by relative property (T) for
(R2oSL(2,R),R2), Proposition 3.95, the restriction has a non-zero vector ξ invariant under
R2 ∼= J . Now by Lemma 3.99, ξ is invariant under G. Thus SL(3,R) has Property (T). �

Remark 3.101. The above proof actually works for SL(3,K) where K is any non-discrete
locally compact topological field.

Corollary 3.102. The group SL(3,Z) has Property (T).

Proof. This follows immediately from Theorems 3.100 and 3.86, in light of the fact that
SL(n,Z) is a lattice in SL(n,R) (Example 3.81). �

Similarly, one can show the following.

Corollary 3.103. The pair (Z2 o SL(2,Z),Z2) has relative property (T).
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Chapter 4

Constructions of Expanders

In this chapter we present constructions of expanders using Property (T), originally due
to Margulis [Mar75]. Construction 4.10 is a simple construction using the fact that SL(3,Z)
has Property (T). Construction 4.12 is the original construction of Margulis, and is slightly
more complicated for the fact that it uses relative property (T) of the pair (Z2oSL(2,Z),Z2).

4.1. Kazhdan Expanders

Property (T) can be understood as a pushing property: if a unitary representation of
a Kazhdan group does not have non-zero invariant vectors then it does not have almost
invariant vectors, that is, there is some ε such that all unit vectors are moved by at least ε
by some element of a Kazhdan set. It is an essential result that there exists a universal ε
that suffices for any unitary representation of the group, as studied in Section 3.4.

The construction of expanders using Property (T) boils down to the following result.

Proposition 4.1 ([Lub94, Proposition 3.3.1]). Let Γ be a discrete Kazhdan group. Suppose
that (Ni) be a family of finite index normal subgroups of Γ such that the indices |Γ/Ni| → ∞
as i → ∞. Suppose furthermore that S ⊂ Γ is a finite symmetric (that is, S−1 = S)
generating set for Γ, and let Si be the image of S in Γ/Ni (under the quotient map). Then
the family Cay(Γ/Ni, Si) is a family of (ni, k, c)-expanders for some c > 0, k = |S| and
ni = |Γ/Ni|.

Proof. By Corollary 3.74, there exists ε > 0 such that any unitary representation of Γ
with an (ε, S)-invariant vector has a non-zero invariant vector. When expressed in the
contrapositive, this means that if a unitary representation π : Γ → U(H) does not have
a non-zero invariant vector, then no unit vector is (ε, S)-invariant, and thus each ξ ∈ H
satisfies

sup{‖π(s)ξ − ξ‖ : s ∈ S} ≥ ε ‖ξ‖ .
As S is finite, for all ξ ∈ H there exists s ∈ S such that

‖π(s)ξ − ξ‖ ≥ ε ‖ξ‖ .
Fix a particularNi and Si, and let Vi = Γ/Ni. Consider the representation of Γ onH = L2(Vi)
defined by

(g · f)(x) = f(xg)

for all f ∈ L2(Vi), x ∈ Vi. (This is the pull back onto Γ of the right-regular representation
of Vi.) Since Vi is discrete, if a function f ∈ H is invariant, then

(g · f)(Ni) = f(Nig)

for all g ∈ Γ, where e ∈ Vi is the identity. The action of Γ on Vi by right-multiplication is
transitive, so we can make the argument Nig any element of Vi. Thus f is constant.
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So we consider the subspace

H0 =

{
f : Vi → C

∣∣∣∣∣∑
x∈Vi

f(x) = 0

}
.

The only constant function f ∈ H0 is zero. Thus the unitary representation π : Γ→ U(H0)
given by the right action of Γ on Vi does not have non-zero invariant vectors.

Now let Vi = A tB where |A| ≤ |B|, and write a = |A| and b = |B|. The ‘characteristic
function’ for A in H0 is

fA(x) =

{
b if x ∈ A
−a if x ∈ B.

By the discussion above, since (ε, S) is a Kazhdan pair for Γ, there is some s ∈ S such that

(4.2) ‖s · fA − fA‖ ≥ ε ‖fA‖ .
We can easily evaluate both sides of this inequality. Since

(s · fA)(x) =

{
b if xs ∈ A
−a if xs ∈ B.

we see that

(s · fA − fA)(x) =


a+ b if x ∈ B and xs ∈ A
−a− b if x ∈ A and xs ∈ B
0 otherwise .

Let Es(A,B) denote the set of edges between A and B that are due to the generator s.
Then |Es(A,B)| = |{x ∈ B | xs ∈ A} ∪ {x ∈ A | xs ∈ B}|, or half that in the case that
s2 = 1. In either case, we have that

(4.3) |Es(A,B)| ≥ 1

2
‖s · fA − fA‖2 /(a+ b)2.

One the other hand,

(4.4) ‖fA‖2 = |A|b2 + |B|a2 = ab(a+ b).

Putting together Equations (4.2), (4.3) and (4.4) we have that

|E(A,B)| ≥ |Es(A,B)| ≥ 1

2
ε2ab(a+ b)/(a+ b)2 =

ε2

2
ab/(a+ b).

Since we assumed |A| ≤ |B|, we have b/(a+ b) ≥ 1
2
, so this gives

|E(A,B)|
min{|A|, |B|}

≥ ε2

4
.

As the partition V = A tB was arbitrary, we can conclude that

h(Cay(Vi, Si)) ≥
ε2

4
.

As ε is independent of Ni, Si (we chose ε > 0 so that (ε, S) is a Kazhdan pair for SL(3,Z)),
it follows that the Cayley graphs form a family of expanders as required. �
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Remark 4.5. There are several parallels between the above proof and the proof that spec-
tral expanders are combinatorial expanders, Proposition 2.12. In the same way that u is
always a 1-eigenvector for Â, we saw that a constant f is always invariant. Considering the
eigenvectors orthogonal to u is essentially the same as considering the invariant subspace
H0.

Remark 4.6. At first it might seem unusual that we achieve the expansion of the above
construction by considering only the edges Es(A,B) owing to one particular generator s for
each choice of the partition V = A t B. However, since there are only k generators, some
generator will always contribute at least 1

k
of the edges E(A,B) of a cut, so for a Cayley

graph expander one can always just show that |Es(A,B)| is bounded from below by some
constant multiple of min{|A|, |B|}.

Remark 4.7. This construction does not use the full power of Property (T), as highlighted
by the fact that we are only considering finite-dimensional representations. In fact, all that is
required is that any representation of Γ which factors through a finite quotient of Γ and has
almost invariant vectors has a non-zero invariant vector. A group Γ has Property (τ) relative
to L, a particular family of finite index normal subgroups, if any unitary representation
of Γ with almost invariant vectors that factors through some quotient Γ/N with N ∈ L
has a non-zero invariant vector. The group has Property (τ) if it has Property (τ) with
respect to the family of all finite index normal subgroups. The family of Cayley graphs
Cay(Γ/N, S) for N ∈ L will be a family of expanders if and only if Γ has Property (τ)
with respect to L. Property (τ) is an interesting topic of study because although it is weaker
than Property (T), consequently more groups have Property (τ). The Selberg 3/16 Theorem
implies that SL(2,Z) has Property (τ) with respect to the family of principle congruence
subgroups, that is, the kernels of the natural maps SL(2,Z)→ SL(2,Z/mZ). The reader is
referred to the book [LZ03] by Lubotzky and Zuk for a detailed treatment of Property (τ).

Remark 4.8. Another comment that we can make on the above proof is that we did not
actually use the fact that the Ni are normal in Γ. In order to call the graphs Cayley graphs,
this is required. However, we can generally consider ‘Schreier graph’ which is like a Cayley
graph, except that the vertices are cosets of Γ/H.

Lemma 4.9. Define

A =

1 1 0
0 1 0
0 0 1

 and B =

 0 1 0
0 0 1
−1 0 0


Then S = {A,A−1, B,B−1} generate SL(3,Z).

Construction 4.10. Let S = {A±1, B±1}, where A and B are as in Lemma 4.9. We define
a family of graphs by taking the Cayley graphs Cay(SL(3,Z/pZ), S) with those generators.

Proposition 4.11. Construction 4.10 is a family of expanders.

Proof. For any prime p, let φ : SL(3,Z) → SL(3,Z/pZ) be the natural homomorphism
defined by mapping each entry aij of a ∈ SL(3,Z) to aij (mod p). Because the map Z →
Z/pZ is a ring homomorphism, and the determinant is defined only in terms of addition
and multiplication of matrix entries, the image of any element of SL(3,Z) will indeed be in
SL(3,Z/pZ). The group SL(3,Z/pZ) is finite, so the kernels of those homomorphisms define
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Figure 4.1. The Margulis construction for m = 12 and m = 24.

finite index normal subgroups Ni that can be applied to Proposition 4.1. This completes the
proof. �

4.2. Margulis’s Construction of Expanders

We also give the original construction of Margulis. It is illustrated for m = 12 and
m = 24 in Figure 4.1.

Construction 4.12 (Margulis, [Mar75]). Let m be a positive integer and Vm = (Z/mZ)2.
Define a graph on the set Vm by connecting every (a, b) ∈ Vm to σ1(a, b) = (a + 1, b),
σ2(a, b) = (a, b+ 1), σ3(a, b) = (a, a+ b), and σ4(a, b) = (−b, a).

Proposition 4.13. The graphs (Vm) in Construction 4.12 are a family of expanders.

Proof. We cannot apply Proposition 4.1 directly because Γ = Z2 o SL(Z, 2) does not have
Property (T), but only relative property (T) with respect to the subgroup Z2. The group Γ
acts naturally on Vm by affine transformations:((

x
y

)
,

(
p q
r s

))
·
(
a
b

)
=

(
p q
r s

)(
a
b

)
+

(
x
y

)
=

(
pa+ qb+ x
ra+ sb+ y

)
.

To see that this is indeed a group action, note that the identity (0, 1) of Z2 o SL(Z, 2) does
indeed act as the identity, and for arbitrary (t1, r1), (t2, r2) ∈ Z2oSL(2,Z) and x ∈ (Z/mZ)2

we have

(t1, r1) · (t2, r2) · x = (t1, r1) · (r2x+ t2)

= r1(r2x+ t2) + t1

= r1r2x+ (r1t2 + t1)

= (r1r2, r1t2 + t1) · x
= ((r1, t1)(r2, t1)) · x
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by the definition of the semidirect product (where we took the standard action of SL(2,Z)
on Z2.

We can express the σi as the actions of particular elements of the two groups used to
construct the semidirect product Z2 o SL(2,Z):

σ1 =

(
1
0

)
∈ Z2, σ2 =

(
0
1

)
∈ Z2, σ3 =

(
1 1
0 1

)
∈ SL(2,Z), σ3 =

(
0 −1
1 0

)
∈ SL(2,Z).

It is obvious that σ1 and σ2 generate Z2, and not too hard to see that σ3 and σ4 generate
SL(2,Z) (essentially a special case of Lemma 4.9), so that together they generate the entire
semidirect product Z2 o SL(2,Z).

The action of Γ on Vm gives rise to a unitary representation of Γ on L2(Vm), by

(g · f)(x) = f(g · x)

for all x ∈ Vm, f ∈ L2(Vm). Now, similarly to in the proof of Proposition 4.1, the only
Z2-invariant vectors are the constant functions, since the action of Z2 on Vm is transitive.
So if we quotient out by the constant functions, considering the subspace of functions that
sum over Vm to zero, there is some ε such that each unit vector is moved at least ε by one of
the four generators. As in Proposition 4.1, by considering characteristic functions, it follows
that these graphs form a family of expanders. �

Remark 4.14. An interesting point of comparison between Construction 4.10 and Margulis’s
construction is that the latter does not require the generation of large primes. Moreover,
given any particular vertex in these expanders, there is a polynomial time algorithm (in fact,
a linear time algorithm) to compute its neighbours. In the terminology of [HLW06, p.453],
it is thus a ‘very explicit’ construction, as opposed to a ‘mildly explicit’ construction.
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Appendix A

Asymptotic Representations

The following definitions, closely following Knuth [Knu06, pp.107-110], are useful through-
out the essay.

Definition A.1 (Big-oh notation). Let f, g : N → R be functions. We say that f(n) is
big-oh of g(n) as n tends to infinity, and write f = O(g) or f(n) = O(g(n)), if there are
positive constants M and n0 such that

|f(n)| ≤M |g(n)|
for all n ≥ n0.

Example A.2. Since 12 + 22 + . . .+ n2 = 1
3
n3 + 1

2
n2 + 1

6
n, it follows that:

12 + 22 + · · ·+ n2 = O(n4);(A.3)

12 + 22 + · · ·+ n2 = O(n3); and(A.4)

12 + 22 + · · ·+ n2 =
1

3
n3 +O(n2).(A.5)

Equation (A.3) is crude but true. Equation (A.4) is a stronger statement, and equation (A.5),
which we can read as saying that

12 + 22 + · · ·+ n2 − 1

3
n2 = O(n2),

is stronger yet.

Definition A.6 (Asymptotic equivalence). Let f, g : N→ R be two functions. We say that
f and g are asymptotically equivalent, and write f ∼ g, if

lim
n→∞

f(n)/g(n) = 1.

Remark A.7. Asymptotic equivalence in the above Definition A.6 does indeed give an
equivalence relation on the functions N→ R.

Example A.8. Stirling’s approximation is that

n! ∼
√

2πn
(n
e

)n
.

A weaker approximation would be to say that, for example,

n! = O((n/e)n+1).
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Appendix B

A Lemma in Topology

Lemma B.1. Let X and Y be topological spaces with X compact. Suppose that f :
X × Y → R is continuous. Then

g(y) = sup
x∈X

f(x, y)

defines a continuous function g : Y → R.

Proof. First note that for any fixed y ∈ Y , the map x 7→ f(x, y) is continuous. Thus
the compactness of X gives that supx∈X f(x, y) < ∞, and that moreover the maximum is
attained by at least one x ∈ X.

Consider an arbitrary y0 ∈ Y and let a = g(y0). Let ε > 0 be arbitrary. We will show
that there exists an open set V 3 y0 in Y such that

g(V ) ⊆ (a− ε, a+ ε).

Let x0 ∈ X be a point such that f(x0, y0) = a (such an x0 must exist by compactness of
X as noted above). By the continuity of y 7→ f(x0, y), there exists an open set V − 3 y0 such
that f(x0, y) ∈ (a−ε, a+ε) for all y ∈ V −. From the definition of g, we have g(y) ≥ f(x0, y)
for all y ∈ Y . Thus g(y) > a− ε for all y ∈ V −.

The more difficult part of the proof is to find an open V + such that g(y) < a + ε for
all y ∈ V + (that is, to show that g is upper semi-continuous). This difficulty arises because
in a neighbourhood of y0, g(y) could be determined by x different from x0. (One such
counterexample where X is not compact is f : R × R → R : (x, y) 7→ sin(xy) near y = 0,
which has a jump discontinuity from 0 to 1.) We need to use the compactness of X to rule
out such pathological behaviour.

For each x ∈ X, by the continuity of f we can find open sets Ux 3 x and Vx 3 y0 such that
f(Ux× Vx) ⊆ (f(x, y0)− ε, f(x, y0) + ε). In particular, f(u, v) < a+ ε for all u ∈ Ux, v ∈ Vx.
Now we define

Wx = {x ∈ X : f(x, y) < a+ ε for all y ∈ Vx}.
Because Ux is open and x ∈ Ux ⊆ Wx, we have x ∈ int(Wx) for each x. Thus ∪x∈X int(Wx)
is an open cover for X. Since X is compact, there is a finite subcover

X = ∪ni=1 int(Wxi).

Now put V + = ∩ni=1Vxi which is the finite intersection of open sets, hence open. (Note that
since y0 ∈ Vx for all x ∈ X, y0 ∈ V + also.) So for each x ∈ X there is some xi for which
x ∈ Wxi , so that we have f(x, y) < a + ε for all y ∈ V + ⊆ Vxi . Thus g(y) < a + ε for all
y ∈ V + (using compactness of X).

Finally, we can take V = V −∩V + as a neighbourhood of y0 such that g(V ) ⊆ (a−ε, a+ε),
as required. �
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Birkhäuser, 1994.

[Lub12] A. Lubotzky. Personal communication, 2012.
[LW93] A. Lubotzky and B. Weiss. Groups and expanders. DIMACS series Vol. 10,

1993.
[LZ03] A. Lubotzky and A. Zuk. On property (τ). To appear, 2003.
[Mar75] G. Margulis. Explicit constructions of concentrators. Probl. of Inform. Transm.,

1975.
[Mar88] G. Margulis. Explicit group-theoretic constructions of combinatorial schemes and

their applications in the construction of expanders and concentrators. Probl. of
Inform. Transm., 24(1):51–60, 1988.

[Mun00] J. Munkres. Topology. Pearson, 2000.
[Pin73] M. Pinsker. On the complexity of a concentrator. In 7th Annual Teletraffic

Conference, pages 318/1–318/4, Stockholm, 1973.
[Rab80] M.O. Rabin. Probabilistic algorithm for testing primality. Journal of number

theory, 12(1):128–138, 1980.
[Sar90] P. Sarnak. Some Applications of Modular Forms. Cambridge University Press,

1990.
[Sha99] Y. Shalom. Invariant measures for algebraic actions, Zariski dense subgroups and

Kazhdan’s property (T). Transactions of the American Mathematical Society,
351(8):3387–3412, 1999.

59


	Introduction
	Acknowledgements
	Chapter 1. Expander Graphs
	1.1. Graph Theory Background
	1.2. Introduction to Expander Graphs
	1.3. Diameter in Expanders
	1.4. Alternative Definitions of Expansion
	1.5. Existence of Expanders
	1.6. Cayley Graphs
	1.7. Some Negative Results for Cayley Graph Expansion
	1.8. Expansion in SL(2, Z/pZ)

	Chapter 2. Random Walks on Expanders
	2.1. Random Walks and the Graph Spectrum
	2.2. Spectral Expansion
	2.3. Efficient Error Reduction for RP

	Chapter 3. Kazhdan's Property (T)
	3.1. Unitary Representations of Locally Compact Groups
	3.2. Property (T)
	3.3. Compact Groups Have Property (T)
	3.4. Kazhdan Sets and Generation
	3.5. Lattices and Property (T)
	3.6. Some Non-compact Kazhdan Groups

	Chapter 4. Constructions of Expanders
	4.1. Kazhdan Expanders
	4.2. Margulis's Construction of Expanders

	Appendix A. Asymptotic Representations
	Appendix B. A Lemma in Topology
	References

